The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis

Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Stockwell, B. R., Jiang, X. & Gu, W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30, 478–490 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun, Y. et al. The emerging role of ferroptosis in inflammation. Biomed. Pharmacother. 127, 110108 (2020).

CAS  PubMed  Article  Google Scholar 

Dixon, S. J. & Stockwell, B. R. The hallmarks of ferroptosis. Annu. Rev. Canc Biol. 3, 35–54 (2019).

Article  Google Scholar 

Poltorack, C. D. & Dixon, S. J. Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J. 289, 374–385 (2022).

CAS  PubMed  Article  Google Scholar 

Ju, H. Q., Lin, J. F., Tian, T., Xie, D. & Xu, R. H. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct. Target Ther. 5, 231 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shimada, K., Hayano, M., Pagano, N. C. & Stockwell, B. R. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23, 225–235 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ding, C. C. et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat. Metab. 2, 270–277 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kreft, S. G., Wang, L. & Hochstrasser, M. Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J. Biol. Chem. 281, 4646–4653 (2006).

CAS  PubMed  Article  Google Scholar 

Lin, H., Li, S. & Shu, H. B. The membrane-associated MARCH E3 ligase family: emerging roles in immune regulation. Front. Immunol. 10, 1751 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Scott, N. A., Sharpe, L. J. & Brown, A. J. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1866, 158837 (2021).

CAS  PubMed  Article  Google Scholar 

Hassink, G. et al. TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem. J. 388, 647–655 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Foresti, O., Ruggiano, A., Hannibal-Bach, H. K., Ejsing, C. S. & Carvalho, P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2, e00953 (2013).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zelcer, N. et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol. 34, 1262–1270 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Nguyen, K. T. et al. N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2. J. Biol. Chem. 294, 379–388 (2019).

CAS  PubMed  Article  Google Scholar 

Park, S. E. et al. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347, 1249–1252 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hwang, C. S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nguyen, K. T., Mun, S. H., Lee, C. S. & Hwang, C. S. Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp. Mol. Med. 50, 91 (2018).

Article  CAS  Google Scholar 

Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schultz, M. L. et al. Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD. Nat. Commun. 9, 3671 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Stefanovic-Barrett, S. et al. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Rep. 19, e45603 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zattas, D., Berk, J. M., Kreft, S. G. & Hochstrasser, M. A Conserved C-terminal element in the yeast Doa10 and human MARCH6 ubiquitin ligases required for selective substrate degradation. J. Biol. Chem. 291, 12105–12118 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667 (2018).

CAS  PubMed  Article  Google Scholar 

Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).

CAS  PubMed  Article  Google Scholar 

Mockli, N. et al. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Biotechniques 42, 725–730 (2007).

CAS  PubMed  Article  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hunt, T., Herbert, P., Campbell, E. A., Delidakis, C. & Jackson, R. J. The use of affinity chromatography on 2′5′ ADP-sepharose reveals a requirement for NADPH, thioredoxin and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates. Eur. J. Biochem. 131, 303–311 (1983).

CAS  PubMed  Article  Google Scholar 

Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

CAS  PubMed  Article  Google Scholar 

Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun, X. et al. Activation of the p62–Keap1–NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016).

CAS  PubMed  Article  Google Scholar 

Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Carlson, B. A. et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22–31 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zheng, X. et al. Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. Proc. Natl Acad. Sci. USA 104, 8809–8814 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kempf, A., Song, S. M., Talbot, C. B. & Miesenbock, G. A potassium channel β-subunit couples mitochondrial electron transport to sleep. Nature 568, 230–234 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310–316 (2011).

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif