Identification of novel inhibitors for mycobacterial polyketide synthase 13 via in silico drug screening assisted by the parallel compound screening with genetic algorithm-based programs

Lönnroth K, Castro KG, Chakaya JM, Chauhan LS, Floyd K, Glaziou P, et al. Tuberculosis control and elimination 2010-50: cure, care, and social development. Lancet. 2010;375:1814–29.

Article  Google Scholar 

Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 2010;328:856–61.

CAS  Article  Google Scholar 

Torres JN, Paul LV, Rodwell TC, Victor TC, Amallraja AM, Elghraoui A, et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg Microbes Infect. 2015;4:e42

CAS  Article  Google Scholar 

Shaku M, Ealand C, Kana BD. Cell surface biosynthesis and remodeling pathways in mycobacteria reveal new drug targets. Front Cell Infect Microbiol. 2020;10:603382.

CAS  Article  Google Scholar 

Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18:81–101.

CAS  Article  Google Scholar 

Portevin D, De sousa-D'auria C, Houssin C, Grimaldi C, Chami M, Daffe M, et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA. 2004;101:314–9.

CAS  Article  Google Scholar 

Gavalda S, Leger M, van der Rest B, Stella A, Bardou F, Montrozier H, et al. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem. 2009;284:19255–64.

CAS  Article  Google Scholar 

Gavalda S, Bardou F, Laval F, Bon C, Malaga W, Chalut C, et al. The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Biol. 2014;21:1660–9.

CAS  Article  Google Scholar 

Lun S, Xiao S, Zhang W, Wang S, Gunosewoyo H, Yu LF, et al. Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis. Antimicrob Agents Chemother. 2021;65:e02190–20.

CAS  Article  Google Scholar 

Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, et al. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS ONE. 2013;8:e75245

CAS  Article  Google Scholar 

Wilson R, Kumar P, Parashar V, Vilcheze C, Veyron-Churlet R, Freundlich JS, et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol. 2013;9:499–506.

CAS  Article  Google Scholar 

North EJ, Jackson M, Lee RE. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des. 2014;20:4357–78.

CAS  Article  Google Scholar 

Aggarwal A, Parai MK, Shetty N, Wallis D, Woolhiser L, Hastings C, et al. Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell. 2017;170:249–59.e225.

CAS  Article  Google Scholar 

Wilson C, Ray P, Zuccotto F, Hernandez J, Aggarwal A, Mackenzie C, et al. Optimization of TAM16, a benzofuran that inhibits the thioesterase activity of Pks13; evaluation toward a preclinical candidate for a novel antituberculosis clinical target. J Med Chem. 2022;65:409–23.

CAS  Article  Google Scholar 

Koseki Y, Aoki S. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity. Curr Top Med Chem. 2014;14:176–88.

CAS  Article  Google Scholar 

Kuriki K, Taira J, Kuroki M, Sakamoto H, Aoki S. Computer-assisted screening of mycobacterial growth inhibitors: Exclusion of frequent hitters with the assistance of the multiple target screening method. Int J Mycobacteriol. 2021;10:307–11.

CAS  PubMed  Google Scholar 

Izumizono Y, Arevalo S, Koseki Y, Kuroki M, Aoki S. Identification of novel potential antibiotics for tuberculosis by in silico structure-based drug screening. Eur J Med Chem. 2011;46:1849–56.

CAS  Article  Google Scholar 

Kanetaka H, Koseki Y, Taira J, Umei T, Komatsu H, Sakamoto H, et al. Discovery of InhA inhibitors with anti-mycobacterial activity through a matched molecular pair approach. Eur J Med Chem. 2015;94:378–85.

CAS  Article  Google Scholar 

Taira J, Umei T, Inoue K, Kitamura M, Berenger F, Sacchettini JC, et al. Improvement of the novel inhibitor for Mycobacterium enoyl-acyl carrier protein reductase (InhA): a structure-activity relationship study of KES4 assisted by in silico structure-based drug screening. J Antibiot. 2020;73:372–81.

CAS  Article  Google Scholar 

Taira J, Ito T, Nakatani H, Umei T, Baba H, Kawashima S, et al. In silico structure-based drug screening of novel antimycobacterial pharmacophores by DOCK-GOLD tandem screening. Int J Mycobacteriol. 2017;6:142–8.

CAS  Article  Google Scholar 

Taira J, Morita K, Kawashima S, Umei T, Baba H, Maruoka T, et al. Identification of a novel class of small compounds with anti-tuberculosis activity by in silico structure-based drug screening. J Antibiot. 2017;70:1057–64.

CAS  Article  Google Scholar 

Nakashima J, Takeuchi M, Kawamoto S, Monobe K, Taira J, Aoki S. Establishing parallel compound screening and identification of novel antimicrobial compounds targeting Staphylococcus aureus dihydrofolate reductase. J Appl Pharm Sci. 2022, in press.

Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001;15:411–28.

CAS  Article  Google Scholar 

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52:609–23.

CAS  Article  Google Scholar 

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

CAS  PubMed  PubMed Central  Google Scholar 

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

CAS  Article  Google Scholar 

Durant JL, Leland BA, Henry DR, Nourse JG. Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci. 2002;42:1273–80.

CAS  Article  Google Scholar 

T JAS, J R, Rajan A, Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health. 2020;13:1255–64.

Article  Google Scholar 

Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med. 2015;373:1986–8.

Article  Google Scholar 

Olayanju O, Limberis J, Esmail A, Oelofse S, Gina P, Pietersen E, et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J. 2018;51.

Marrakchi H, Laneelle MA, Daffe M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol. 2014;21:67–85.

CAS  Article  Google Scholar 

Cruz JN, Costa JFS, Khayat AS, Kuca K, Barros CAL, Neto A. Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis Polyketide Synthase 13. J Biomol Struct Dyn. 2019;37:1616–27.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif