Pectolinarigenin Suppresses LPS-Induced Inflammatory Response in Macrophages and Attenuates DSS-Induced Colitis by Modulating the NF-κB/Nrf2 Signaling Pathway

Wei, Y. L. et al., 2018. “Fecal microbiota transplantation ameliorates experimentally induced colitis in mice by upregulating AhR,” Frontiers in Microbiology, vol. 9, no. AUG, pp. 1–12. https://doi.org/10.3389/fmicb.2018.01921.

Fiocchi, C. 1997. The immune system in inflammatory bowel disease. Acta gastro-enterologica Belgica 60 (2): 156–162.

CAS  PubMed  Google Scholar 

Wen, Z., and C. Fiocchi. 2004. Inflammatory bowel disease: Autoimmune or immune-mediated pathogenesis? Clinical and Developmental Immunology 11 (3–4): 195–204. https://doi.org/10.1080/17402520400004201.

Article  PubMed  PubMed Central  Google Scholar 

Balfour, R., G., Sartor, D., Wu. 2017. “Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches,” Gastroenterology, vol. 152, no. 2, pp. 327–339. https://doi.org/10.1053/j.gastro.2016.10.012.Roles

Suman, S., et al. 2018. Phospho-proteomic analysis of primary human colon epithelial cells during the early Trypanosoma cruzi infection phase. PLoS Neglected Tropical Diseases 12 (9): 1–24. https://doi.org/10.1371/journal.pntd.0006792.

CAS  Article  Google Scholar 

Ramakrishnan, S.K., et al. 2019. “Intestinal non-canonical NFκB signaling shapes the local and systemic immune response.,” Nature communications, vol. 10, no. 1, p. 660. https://doi.org/10.1038/s41467-019-08581-8.

Simadibrata, M., C.C. Halimkesuma, and B.M. Suwita. 2017. Efficacy of curcumin as adjuvant therapy to induce or maintain remission in ulcerative colitis patients: An evidence-based clinical review. Acta medica Indonesiana 49 (4): 363–368.

PubMed  Google Scholar 

Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature reviews. Immunology 2 (10): 725–734. https://doi.org/10.1038/nri910.

CAS  Article  PubMed  Google Scholar 

Bryan, H.K., A. Olayanju, C.E. Goldring, and B.K. Park. 2013. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochemical pharmacology 85 (6): 705–717. https://doi.org/10.1016/j.bcp.2012.11.016.

CAS  Article  PubMed  Google Scholar 

Innamorato, N.G., I. Lastres-Becker, and A. Cuadrado. 2009. Role of microglial redox balance in modulation of neuroinflammation. Current opinion in neurology 22 (3): 308–314. https://doi.org/10.1097/WCO.0b013e32832a3225.

CAS  Article  PubMed  Google Scholar 

Jazwa, A., and A. Cuadrado. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Current drug targets 11 (12): 1517–1531. https://doi.org/10.2174/1389450111009011517.

CAS  Article  PubMed  Google Scholar 

Joshi, G., and J.A. Johnson. 2012. The Nrf2-ARE pathway: A valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents on CNS Drug Discovery 7 (3): 218–229. https://doi.org/10.2174/157488912803252023.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wakabayashi, N., S.L. Slocum, J.J. Skoko, S. Shin, and T.W. Kensler. 2010. When NRF2 talks, who’s listening? Antioxidants and Redox Signaling 13 (11): 1649–1663. https://doi.org/10.1089/ars.2010.3216.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Moura, F.A., K.Q. de Andrade, J.C.F. dos Santos, O.R.P. Araújo, and M.O.F. Goulart. 2015. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biology 6: 617–639. https://doi.org/10.1016/j.redox.2015.10.006.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kruidenier, L., and H.W. Verspaget. 2002. Review article: Oxidative stress as a pathogenic factor in inflammatory bowel disease - radicals or ridiculous? Alimentary Pharmacology and Therapeutics 16 (12): 1997–2015. https://doi.org/10.1046/j.1365-2036.2002.01378.x.

CAS  Article  PubMed  Google Scholar 

Mitani, T., Y. Yoshioka, T. Furuyashiki, Y. Yamashita, Y. Shirai, and H. Ashida. 2017. Enzymatically synthesized glycogen inhibits colitis through decreasing oxidative stress. Free radical biology & medicine 106: 355–367. https://doi.org/10.1016/j.freeradbiomed.2017.02.048.

CAS  Article  Google Scholar 

Z. Wang et al. 2016. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer,” Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/9875298.

Xu, F., X. Gao, and H. Pan. 2018. Pectolinarigenin inhibits non-small cell lung cancer progression by regulating the PTEN/PI3K/AKT signaling pathway. Oncology Reports 40 (6): 3458–3468. https://doi.org/10.3892/or.2018.6759.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang L, N. Wang, Q. Zhao, B. Zhang, Y. Ding. 2019. “Pectolinarin inhibits proliferation, induces apoptosis, and suppresses inflammation in rheumatoid arthritis fibroblast-like synoviocytes by inactivating the phosphatidylinositol 3 kinase/protein kinase B pathway. J Cell Biochem. 120(9):15202–15210. https://doi.org/10.1002/jcb.28784

Lim H, K .H. Son, H.W. Chang, K. Bae, S. S. Kang, H. P. Kim. 2008. “Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum.” Biological & pharmaceutical bulletin vol. 31,11:2063–7. https://doi.org/10.1248/bpb.31.2063

Wang, C., et al. 2016. Pectolinarigenin suppresses the tumor growth in nasopharyngeal carcinoma. Cellular physiology and biochemistry : International journal of experimental cellular physiology, biochemistry, and pharmacology 39 (5): 1795–1803. https://doi.org/10.1159/000447879.

CAS  Article  Google Scholar 

Eichele, D.D., and K.K. Kharbanda. 2017. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology 23 (33): 6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Park, J. H., L. Peyrin-Biroulet, M. Eisenhut, J. Il Shin. 2017. "IBD immunopathogenesis: a comprehensive review of inflammatory molecules." Autoimmunity reviews 16, no. 4 416-426. https://doi.org/10.1016/j.autrev.2017.02.013.

Bamias, G., and F. Cominelli. 2016. Cytokines and intestinal inflammation. Current Opinion in Gastroenterology 32 (6): 437–442. https://doi.org/10.1097/MOG.0000000000000315.

CAS  Article  PubMed  Google Scholar 

Tsukada, Y., T. Nakamura, M. Iimura, B.E. Iizuka, and N. Hayashi. 2002. Cytokine profile in colonic mucosa of ulcerative colitis correlates with disease activity and response to granulocytapheresis. American Journal of Gastroenterology 97 (11): 2820–2828. https://doi.org/10.1016/S0002-9270(02)05446-1.

CAS  Article  PubMed  Google Scholar 

Zhao, Y., et al. 2019. Flavonoid VI-16 protects against DSS-induced colitis by inhibiting Txnip-dependent NLRP3 inflammasome activation in macrophages via reducing oxidative stress. Mucosal Immunology 12 (5): 1150–1163. https://doi.org/10.1038/s41385-019-0177-x.

CAS  Article  PubMed  Google Scholar 

Zhang, J., H. Lei, X. Hu, W. Dong. 2020. Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. European Journal of Pharmacology, vol. 873, no. January, p. 172992. https://doi.org/10.1016/j.ejphar.2020.172992.

Dong, Y., J. Lei, and B. Zhang. 2020. Dietary quercetin alleviated DSS-induced colitis in mice through several possible pathways by transcriptome analysis. Current Pharmaceutical Biotechnology 21 (15): 1666–1673. https://doi.org/10.2174/1389201021666200711152726.

CAS  Article  PubMed  Google Scholar 

Wibowo, A. A., B. Pardjianto, S. B. Sumitro, N. Kania, K. Handono. 2019. Decreased expression of MUC2 due to a decrease in the expression of lectins and apoptotic defects in colitis patients,” Biochemistry and Biophysics Reports, vol. 19, no. March, p. 100655. https://doi.org/10.1016/j.bbrep.2019.100655.

Bank, S., et al. 2019. Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Alimentary pharmacology & therapeutics 49 (7): 890–903. https://doi.org/10.1111/apt.15187.

CAS  Article  Google Scholar 

Niv, Y. 2016. Mucin gene expression in the intestine of ulcerative colitis patients : a systematic review and pp. 1241–1245. https://doi.org/10.1097/MEG.0000000000000707

Hinoda, Y., et al. 1998. Immunohistochemical Detection of MUC2 Mucin Core Protein in Ulcerative Colitis. vol. 153, no. October 1997, pp. 150–153, 1998.

Van Der Sluis, M., et al. 2008. Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: Mucin 2-interleukin 10-deficient mice. Laboratory Investigation 88 (6): 634–642. https://doi.org/10.1038/labinvest.2008.28.

CAS  Article  PubMed  Google Scholar 

Kawashima, H. 2012. Roles of the gel-forming MUC2 mucin and its O-glycosylation in the protection against colitis and colorectal cancer. Biological and Pharmaceutical Bulletin 35 (10): 1637–1641. https://doi.org/10.1248/bpb.b12-00412.

CAS  Article  PubMed  Google Scholar 

Dekker, J.A.N., I.V.A.N. Seuningen , I.B. Renes, A.W.C. Einerhand. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. pp. 117–129. https://doi.org/10.1053/j.gastro.2006.04.020.

Van Der Post, S., et al. 2019. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68 (12): 2142–2151. https://doi.org/10.1136/gutjnl-2018-317571.

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif