Effects of the administration of Elovl5-dependent fatty acids on a spino-cerebellar ataxia 38 mouse model

Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014. https://doi.org/10.1016/j.ajhg.2014.07.001.

Article  PubMed  PubMed Central  Google Scholar 

Martin RE. Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J Neurosci Res. 1998;54:805–13.

CAS  Article  Google Scholar 

Martin RE, Bazan NG. Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem. 1992;59:318–25.

CAS  Article  Google Scholar 

Chisari M, Shu HJ, Taylor A, Steinbach JH, Zorumski CF, Mennerick S. Structurally diverse amphiphiles exhibit biphasic modulation of GABAA receptors: similarities and differences with neurosteroid actions. Br J Pharmacol. 2010;160:130–41.

CAS  Article  Google Scholar 

Mazzocchi-Jones D. Impaired corticostriatal LTP and depotentiation following iPLA2 inhibition is restored following acute application of DHA. Brain Res Bull. 2015;111:69–75.

CAS  Article  Google Scholar 

Sang N, Chen C. Lipid signaling and synaptic plasticity. Neuroscientist. 2006;12:425–34.

CAS  Article  Google Scholar 

Xiao Y, Li X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 1999;846:112–21.

CAS  Article  Google Scholar 

Young C, Gean PW, Chiou LC, Shen YZ. Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse. 2000;37:90–4.

CAS  Article  Google Scholar 

Kutkowska-Kaźmierczak A, Rydzanicz M, Chlebowski A, Kłosowska-Kosicka K, Mika A, Gruchota J, et al. Dominant ELOVL1 mutation causes neurological disorder with ichthyotic keratoderma, spasticity, hypomyelination and dysmorphic features. J Med Genet NLM (Medline). 2018;55:408–14.

Article  Google Scholar 

Mueller N, Sassa T, Morales-Gonzalez S, Schneider J, Salchow DJ, Seelow D, et al. De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy. J Med Genet. 2019;56:164–75.

CAS  Article  Google Scholar 

Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M, et al. Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 2014;71:470–5.

Article  Google Scholar 

Bourassa CV, Raskin S, Serafini S, Teive HAG, Dion PA, Rouleau GA. A New ELOVL4 mutation in a case of spinocerebellar ataxia with erythrokeratodermia. JAMA Neurol. 2015;72:942–3.

Article  Google Scholar 

Ozaki K, Doi H, Mitsui J, Sato N, Iikuni Y, Majima T, et al. A novel mutation in ELOVL4 leading to spinocerebellar ataxia (SCA) with the hot cross bun sign but lacking erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol. 2015;72:797–805.

Article  Google Scholar 

Bernstein PS, Tammur J, Singh N, Hutchinson A, Dixon M, Pappas CM, et al. Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Investig Ophthalmol Vis Sci. 2001;42:3331–6.

CAS  Google Scholar 

Edwards AO, Miedziak A, Vrabec T, Verhoeven J, Acott TS, Weleber RG, et al. Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol. 1999;127:426–35.

CAS  Article  Google Scholar 

Zhang K, Kniazeva M, Han M, Li W, Yu Z, Yang Z, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet. 2001;27:89–93.

CAS  Article  Google Scholar 

Sailer A, Scholz SW, Nalls MA, Schulte C, Federoff M, Price TR, et al. A genome-wide association study in multiple system atrophy. Neurology. 2016;87:1591–8.

CAS  Article  Google Scholar 

Li G, Cui S, Du J, Liu J, Zhang P, Fu Y, et al. Association of GALC, ZNF184, IL1R2 and ELOVL7 with Parkinson’s disease in southern Chinese. Front Aging Neurosci. 2018;10:402.

CAS  Article  Google Scholar 

Keo A, Mahfouz A, Ingrassia AMT, Meneboo JP, Villenet C, Mutez E, et al. Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease. Commun Biol. 2020;3:1–12.

Article  Google Scholar 

Sun C, Zou M, Wang X, Xia W, Ma Y, Liang S, et al. FADS1-FADS2 and ELOVL2 gene polymorphisms in susceptibility to autism spectrum disorders in Chinese children. BMC Psychiatry. 2018;18:283.

Article  Google Scholar 

Borroni B, Di Gregorio E, Orsi L, Vaula G, Costanzi C, Tempia F, et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Park Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2016.04.030.

Article  Google Scholar 

Hoxha E, Gabriele RMC, Balbo I, Ravera F, Masante L, Zambelli V, et al. Motor deficits and cerebellar atrophy in Elovl5 knock out mice. Front Cell Neurosci. 2017. https://doi.org/10.3389/fncel.2017.00343.

Article  PubMed  PubMed Central  Google Scholar 

Balbo I, Montarolo F, Boda E, Tempia F, Hoxha E. Elovl5 Expression in the Central Nervous System of the Adult Mouse. Front Neuroanat. 2021;15:1–13.

Article  Google Scholar 

Hoxha E, Balbo I, Parolisi R, Audano M, Montarolo F, Ravera F, et al. Elovl5 is required for proper action potential conduction along peripheral myelinated fibers. Glia. 2021. https://doi.org/10.1002/glia.24048.

Article  PubMed  PubMed Central  Google Scholar 

Manes M, Alberici A, Di Gregorio E, Boccone L, Premi E, Mitro N, et al. Long-term efficacy of docosahexaenoic acid (DHA) for Spinocerebellar Ataxia 38 (SCA38) treatment: an open label extension study. Park Relat Disord. 2019;63:191–4. https://doi.org/10.1016/j.parkreldis.2019.02.040.

Article  Google Scholar 

Manes M, Alberici A, Di Gregorio E, Boccone L, Premi E, Mitro N, et al. Docosahexaenoic acid is a beneficial replacement treatment for spinocerebellar ataxia 38. Ann Neurol. 2017;82:615–21.

CAS  Article  Google Scholar 

Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, plasticity and pathophysiology of the parallel fiber-purkinje cell synapse. Front Synaptic Neurosci. 2016;8:35.

Article  Google Scholar 

Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d’Exaerde A, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2011;31:11795–807.

CAS  Article  Google Scholar 

Notartomaso S, Zappulla C, Biagioni F, Cannella M, Bucci D, Mascio G, et al. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. BioMed Central. 2013;6:1–17.

Google Scholar 

Shuvaev AN, Hosoi N, Sato Y, Yanagihara D, Hirai H. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol. 2017;595:141–64.

CAS  Article  Google Scholar 

Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.

CAS  Article  Google Scholar 

Zesiewicz TA, Wilmot G, Han Kuo S, Perlman S, Greenstein PE, Sarah Y, et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018;90:464–71.

Article  Google Scholar 

Lei LF, Yang GP, Wang JL, Chuang DM, Song WH, Tang BS, et al. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat Disord. 2016;26:55–61.

Article  Google Scholar 

Benussi A, Pascual-Leone A, Borroni B. Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review. Int J Mol Sci. 2020;21:1948.

Article  Google Scholar 

Divya KP, Kishore A. Treatable cerebellar ataxias. Clin Park Relat Disord. 2022;3:100053.

Google Scholar 

Ouahchi K, Arita M, Kayden H, Hentati F, Ben Hamida M, Sokol R, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet. 1995;9:141–5.

CAS  Article  Google Scholar 

Traber MG, Sokol RJ, Burton GW, Ingold KU, Papas AM, Huffaker JE, et al. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate alpha-tocopherol into lipoproteins secreted by the liver. J Clin Invest. 1990;85:397–407.

CAS  Article  Google Scholar 

Schuelke M, Mayatepek E, Inter M, Becker M, Pfeiffer E, Speer A, et al. Treatment of ataxia in isolated vitamin E deficiency caused by alpha-tocopherol transfer protein deficiency. J Pediatr. 1999;134:240–4.

CAS  Article  Google Scholar 

Mariotti C, Gellera C, Rimondi M, Mineri R, Uziel G, Zorzi G, et al. Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci Springer Milan. 2004;25:130–7.

CAS  Google Scholar 

Cali JJ, Hsieh CL, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme Sterol 27-hydroxylase underlie Cerebrotendinous Xanthomatosis. J Biol Chem. 1991;266:7779.

CAS  Article  Google Scholar 

Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis and management. Orphanet J Rare Dis. 2014;9:17.

Article  Google Scholar 

Takahashi M, Okazaki H, Ohashi K, Ogura M, Ishibashi S, Okazaki S, et al. Current diagnosis and management of abetalipoproteinemia. J Atheroscler Thromb. 2021;28:1009.

CAS  Article  Google Scholar 

Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal supply of both arachidonic and docosahexaenoic acids is required for optimal neurodevelopment. Nutrients. 2021;13:2061.

CAS  Article  Google Scholar 

Hoxha E, Boda E, Montarolo F, Parolisi R, Tempia F. Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice. PLoS ONE. 2012;7:e34726.

CAS  Article  Google Scholar 

Lippiello P, Hoxha E, Volpicelli F, Lo Duca G, Tempia F, Miniaci MC. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology. 2015;89:33–42.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif