Des3PI: a fragment-based approach to design cyclic peptides targeting protein–protein interactions

Ryan DP, Matthews JM (2005) Protein-protein interactions in human disease. Curr Opin Struct Biol 15:441–446

CAS  PubMed  Article  Google Scholar 

Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C (2014) Modulators of protein-protein interactions. Chem Rev 114:4695–4748

CAS  PubMed  Article  Google Scholar 

Archakov AI et al (2003) Protein-protein interactions as a target for drugs in proteomics. Proteomics 3:380–391

CAS  PubMed  Article  Google Scholar 

Sheng C, Dong G, Miao Z, Zhang W, Wang W (2015) State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 44:8238–8259

CAS  PubMed  Article  Google Scholar 

Modell AE, Blosser SL, Arora PS (2016) Systematic targeting of protein-protein interactions. Trends Pharmacol Sci 37:702–713

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wichapong K et al (2019) Rational modulator design by exploitation of protein-protein complex structures. Future Med Chem 11:1015–1033

CAS  PubMed  Article  Google Scholar 

Nevola L, Giralt E (2015) Modulating protein-protein interactions: the potential of peptides. Chem Commun 51:3302–3315

CAS  Article  Google Scholar 

Cunningham AD, Qvit N, Mochly-Rosen D (2017) Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol 44:59–66

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

CAS  PubMed  Article  Google Scholar 

Vinogradov AA, Yin Y, Suga H (2019) Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc 141:4167–4181

CAS  PubMed  Article  Google Scholar 

Arkin M, Tang Y, Wells J (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21:1102–1114

CAS  PubMed  PubMed Central  Article  Google Scholar 

Macalino SJY et al (2018) Evolution of in silico strategies for protein-protein interaction drug discovery. Molecules 23:1963

PubMed Central  Article  CAS  Google Scholar 

Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

CAS  PubMed  Article  Google Scholar 

McHugh SM, Rogers JR, Solomon SA, Yu H, Lin Y-S (2016) Computational methods to design cyclic peptides. Curr Opin Chem Biol 34:95–102

CAS  PubMed  Article  Google Scholar 

Delaunay M, Ha-Duong T (2022) Computational tools and strategies to develop peptide-based inhibitors of protein-protein interactions (ed. Simonson, T.) computational peptide science: methods and protocols methods in molecular biology. Springer, New York, pp 205–230

Google Scholar 

Bosma T, Rink R, Moosmeier MA, Moll GN (2019) Genetically encoded libraries of constrained peptides. ChemBioChem 20:1754–1758

CAS  PubMed  Google Scholar 

Newton MS, Cabezas-Perusse Y, Tong CL, Seelig B (2020) In vitro selection of peptides and proteins-advantages of mRNA display. ACS Synth Biol 9:181–190

CAS  PubMed  PubMed Central  Article  Google Scholar 

Smith GP (2019) Phage display: simple evolution in a petri dish (Nobel lecture). Angew Chem Int Ed 58:14428–14437

CAS  Article  Google Scholar 

Zambrano-Mila MS, Blacio KES, Vispo NS (2020) Peptide phage display: molecular principles and biomedical applications. Ther Innov Regul Sci 54:308–317

PubMed  PubMed Central  Article  Google Scholar 

Wang XS et al (2019) A genetically encoded, phage-displayed cyclic-peptide library. Angew Chem Int Ed 58:15904–15909

CAS  Article  Google Scholar 

Sedan Y, Marcu O, Lyskov S, Schueler-Furman O (2016) Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res 44:W536–W541

CAS  PubMed  PubMed Central  Article  Google Scholar 

Siegert TR, Bird MJ, Makwana KM, Kritzer JA (2016) Analysis of loops that mediate protein-protein interactions and translation into submicromolar inhibitors. J Am Chem Soc 138:12876–12884

CAS  PubMed  Article  Google Scholar 

Santini BL, Zacharias M (2020) Rapid in silico design of potential cyclic peptide binders targeting protein-protein interfaces. Front Chem 8:573259

CAS  PubMed  PubMed Central  Article  Google Scholar 

Duffy FJ et al (2015) Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides. J Chem Inf Model 55:600–613

CAS  PubMed  Article  Google Scholar 

Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531

CAS  PubMed  PubMed Central  Article  Google Scholar 

Duffy FJ et al (2011) CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids. J Chem Inf Model 51:829–836

CAS  PubMed  Article  Google Scholar 

Soler MA et al (2017) Computational design of cyclic peptides for the customized oriented immobilization of globular proteins. Phys Chem Chem Phys 19:2740–2748

CAS  PubMed  Article  Google Scholar 

Hosseinzadeh P et al (2021) Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. Nat Commun 12:3384

CAS  PubMed  PubMed Central  Article  Google Scholar 

ChemAxon (2020) Software solutions and services for chemistry & biology. https://www.chemaxon.com. Accessed Jan 2020

Jakalian A, Jack DB, Bayly CI (2022) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

Article  CAS  Google Scholar 

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

CAS  PubMed  Article  Google Scholar 

Pettersen EF et al (2004) UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

CAS  PubMed  Article  Google Scholar 

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455–461

CAS  PubMed  PubMed Central  Google Scholar 

Virtanen P et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pauling L (1960) The nature of the chemical bond: An introduction to modern structural chemistry. Cornell University Press. 3rd edn. p 664

Krystkowiak I, Manguy J, Davey NE (2018) PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Res 46:W235–W241

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang Y, Sanner MF (2019) AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics (Oxford, England) 35:5121–5127

CAS  Article  Google Scholar 

Zhang Y, Sanner MF (2019) Docking flexible cyclic peptides with AutoDock CrankPep. J Chem Theory Comput 15:5161–5168

CAS  PubMed  PubMed Central  Article  Google Scholar 

Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

Article  Google Scholar 

Tian C et al (2020) ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput 16:528–552

PubMed  Article  CAS  Google Scholar 

Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

CAS  Article  Google Scholar 

Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

Article  Google Scholar 

Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

CAS  Article 

留言 (0)

沒有登入
gif