Influence of zinc levels and Nrf2 expression in the clinical and pathological changes in patients with diabetic nephropathy

Mcmahon M, Lamont DJ, Beattie KA, Hayes JD. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci USA. 2010;107:18838–43.

CAS  Article  Google Scholar 

Chausmer BA. Zinc, insulin and diabetes. J Am Coll Nutr. 1998;17:109–15.

CAS  Article  Google Scholar 

Kaur B, Henry J. Micronutrient status in type 2 diabetes: a review. Adv Food Nutr Res. 2014;71:55–100.

CAS  Article  Google Scholar 

Cai L, Li X-K, Song Y, Cherian MGJCMC. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem. 2005;12:2753–63.

CAS  Article  Google Scholar 

Giacconi RCL, Costarelli L, Cardelli M, Malavolta M, Piacenza F, Provinciali M. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy. Biofactors 2017;43:770–84.

CAS  Article  Google Scholar 

Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 2008;43:370–7.

CAS  Article  Google Scholar 

Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, et al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 2011;60:3055–66.

CAS  Article  Google Scholar 

Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–9.

CAS  Article  Google Scholar 

Chen L, Chen DQ, Wang M, Liu D, Chen H, Dou F, et al. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chem-Biol Interact. 2017;273:56–72.

CAS  Article  Google Scholar 

Mylroie H, Dumont O, Bauer A, Thornton CC, Mackey J, Calay D, et al. PKCε-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res. 2015;106:509–19.

CAS  Article  Google Scholar 

Yang F, Li B, Dong X, Cui W, Luo P. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus. J Trace Elem Med Biol. 2017;42:1–10.

CAS  Article  Google Scholar 

American, Diabetes, Association. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S13–S27.

Article  Google Scholar 

Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.

Article  Google Scholar 

Krezel AMW. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem. 2006;11:1049–62.

CAS  Article  Google Scholar 

Jansen J, Karges W, Rink L. Zinc and diabetes—clinical links and molecular mechanisms. J Nutr Biochem. 2009;20:399–417.

CAS  Article  Google Scholar 

Pushparani DS. Zinc and type 2 diabetes mellitus with periodontitis - a systematic review. Curr Diabetes Rev. 2014;10:397–401.

CAS  Article  Google Scholar 

Norouzi S, Adulcikas J, Sohal SS, Myers S. Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease. J Biomed Sci. 2017;24:87.

Article  Google Scholar 

Hamasaki H, Kawashima Y, Yanai H. Serum Zn/Cu ratio is associated with renal function, glycemic control, and metabolic parameters in Japanese patients with and without Type 2 diabetes: a Cross-sectional Study. Front Endocrinol. 2016;7:147.

Article  Google Scholar 

Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, et al. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS ONE. 2012;7:e49257.

CAS  Article  Google Scholar 

Ishida T, Takechi S. Nrf2-ARE-dependent alterations in zinc transporter mRNA expression in HepG2 cells. PLoS ONE. 2016;11:e0166100.

Article  Google Scholar 

Luo Y-Y, Zhao J, Han X-Y, Zhou X-H, Ji L-N. Relationship between serum zinc level and microvascular complications in patients with Type 2 diabetes. Chin Med J. 2015;128:3276.

CAS  Article  Google Scholar 

Mcnair P, Kiilerich S, Christiansen C, Christensen MS, Madsbad S, Transbol I. Hyperzincuria in insulin treated diabetes mellitus—its relation to glucose homeostasis and insulin administration. Clin Chim Acta. 1981;112:343–8.

CAS  Article  Google Scholar 

de Luis DA, Pacheco D, Izaola O, Terroba MC, Cuellar L, Cabezas G. Micronutrient status in morbidly obese women before bariatric surgery. Surg Obes Relat Dis. 2013;9:323–7.

Article  Google Scholar 

Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68:19–31.

CAS  Article  Google Scholar 

Darroudi S, Saberi-Karimian M, Tayefi M, Tayefi B, Khashyarmanesh Z, Fereydouni N, et al. Association between hypertension in healthy participants and zinc and copper status: a Population-Based Study. Biol Trace Elem Res. 2019;190:38–44.

CAS  Article  Google Scholar 

Kelkitli E, Ozturk N, Aslan NA, Kilic-Baygutalp N, Bayraktutan Z, Kurt N, et al. Serum zinc levels in patients with iron deficiency anemia and its association with symptoms of iron deficiency anemia. Ann Hematol. 2016;95:751–6.

CAS  Article  Google Scholar 

Gupta V, Ravi AK, Asthana K. Serum zinc and copper levels in aplastic anemia. Indian Pediatr. 2012;49:493–4.

Article  Google Scholar 

Trainor CD, Ghirlando R, Simpson MA. GATA zinc finger interactions modulate DNA binding and transactivation. J Biol Chem. 2000;275:28157–66.

CAS  Article  Google Scholar 

Vinodkumar P, Ajith TA. Advanced glycation end products: association with the pathogenesis of diseases and the current therapeutic advances. Curr Clin Pharm. 2016;11:118–27.

Article  Google Scholar 

Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 2001;44:129–46.

CAS  Article  Google Scholar 

Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev. 2010;3:101–8.

Article  Google Scholar 

Zhuang X, Pang X, Zhang W, Wu W, Zhao J, Yang H, et al. Effects of zinc and manganese on advanced glycation end products (AGEs) formation and AGEs-mediated endothelial cell dysfunction. Life Sci. 2012;90:131–9.

CAS  Article  Google Scholar 

Haneda M, Koya D, Isono M, Kikkawa R. Overview of glucose signaling in mesangial cells in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1374–82.

Article  Google Scholar 

Dong Z, Sun Y, Wei G, Li S, Zhao Z. Ergosterol ameliorates diabetic nephropathy by attenuating mesangial cell proliferation and extracellular matrix deposition via the TGF-beta1/Smad2 signaling pathway. Nutrients. 2019;11:483.

Article  Google Scholar 

Zhang X, Dan L, Xu L, Zhi-Hong C, Xuemei W, Yue Z, et al. Effect of zinc deficiency on mouse renal interstitial fibrosis in diabetic nephropathy. Mol Med Rep. 2016;14:5245–52.

CAS  Article  Google Scholar 

Gong W, Chen Z, Zou Y, Zhang L, Huang J, Liu P, et al. CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys. Free Radic Biol Med. 2018;115:338–50.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif