METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis

He, P. C. & He, C. m6A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 40, e105977 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

CAS  PubMed  Google Scholar 

Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

CAS  PubMed  Google Scholar 

Su, R. et al. METTL16 exerts an mA-independent function to facilitate translation and tumorigenesis. Nat. Cell Biol. 24, 205–216 (2022).

CAS  PubMed  Google Scholar 

Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Knuckles, P. et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32, 415–429 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Choe, J. et al. mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Xu, W. et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317–321 (2021).

CAS  PubMed  Google Scholar 

Schöller, E. et al. Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 24, 499–512 (2018).

PubMed  PubMed Central  Google Scholar 

Xie, J., Kozlov, G. & Gehring, K. The “tale” of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. Biochimica et biophysica acta. 1839, 1062–1068 (2014).

CAS  PubMed  Google Scholar 

Kranz, A. & Anastassiadis, K. The role of SETD1A and SETD1B in development and disease. Biochim Biophys Acta Gene Regul Mech 1863, 194578 (2020).

CAS  PubMed  Google Scholar 

Fatscher, T., Boehm, V., Weiche, B. & Gehring, N. H. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA 20, 1579–1592 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Umezawa, R. et al. Aberrant histone modifications at the thyrotropin-releasing hormone gene in resistance to thyroid hormone: analysis of F455S mutant thyroid hormone receptor. Endocrinology 150, 3425–3432 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Huang, J. et al. Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1. J Virol 80, 5740–5746 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Xue, H. et al. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature 573, 445–449 (2019).

CAS  PubMed  Google Scholar 

Berger, C. M., Gaume, X. & Bouvet, P. The roles of nucleolin subcellular localization in cancer. Biochimie 113, 78–85 (2015).

CAS  PubMed  Google Scholar 

Schick, M. et al. Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nat. Commun. 13, 281 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Heerma van Voss, M. R. et al. Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer. OncoTargets Ther. 10, 3501–3513 (2017).

Google Scholar 

Vadlamudi, R. K. et al. Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res. 65, 7724–7732 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Derry, J. J., Prins, G. S., Ray, V. & Tyner, A. L. Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene 22, 4212–4220 (2003).

CAS  PubMed  Google Scholar 

Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L. & Mercurio, A. M. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 65, 10938–10945 (2005).

CAS  PubMed  Google Scholar 

Tanaka, T. et al. Altered localization of retinoid X receptor alpha coincides with loss of retinoid responsiveness in human breast cancer MDA-MB-231 cells. Mol. Cell. Biol. 24, 3972–3982 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

PubMed  Google Scholar 

Huang, H. et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567, 414–419 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Li, Y. et al. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52, 870–877 (2020).

CAS  PubMed  Google Scholar 

Niu, Y. et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics 11, 8–17 (2013).

CAS  PubMed  Google Scholar 

Wei, G. et al. Acute depletion of METTL3 implicates N6-methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Res. 31, 1395–1408 (2021).

PubMed  PubMed Central  Google Scholar 

Wei, J. & He, C. Chromatin and transcriptional regulation by reversible RNA methylation. Curr. Opin. Cell Biol. 70, 109–115 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

PubMed  PubMed Central  Google Scholar 

Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Cui, X., Meng, J., Zhang, S., Chen, Y. & Huang, Y. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics 32, i378–i385 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Quinlan, A. R. BEDTools: The Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47, 11–34 (2014). 11 12.

PubMed  PubMed Central  Google Scholar 

Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

CAS  PubMed  Google Scholar 

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

Google Scholar 

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

CAS  PubMed  Google Scholar 

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

PubMed  PubMed Central  Google Scholar 

Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Yu, G., Wang, L. G., Han

留言 (0)

沒有登入
gif