CircJag1 promotes apoptosis of ethylene thiourea–exposed anorectal malformations through sponging miR-137-3p by regulating Sox9 and suppressing Wnt/β-catenin pathway during the hindgut development of rat embryos

Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072–87. https://doi.org/10.1101/gad.1171104.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Anguissola S, McCormack WJ, Morrin MA, Higgins WJ, Fox DM, Worrall DM. Pigment epithelium-derived factor (PEDF) interacts with transportin SR2, and active nuclear import is facilitated by a novel nuclear localization motif. PLoS One. 2011;6(10):e26234. https://doi.org/10.1371/journal.pone.0026234.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bai Y, Yuan Z, Wang W, Zhao Y, Wang H, Wang W. Quality of life for children with fecal incontinence after surgically corrected anorectal malformation. J Pediatr Surg. 2000;35(3):462–4. https://doi.org/10.1016/s0022-3468(00)90215-x.

CAS  Article  PubMed  Google Scholar 

Bai Y, Chen H, Yuan ZW, Wang W. Normal and abnormal embryonic development of the anorectum in rats. J Pediatr Surg. 2004;39(4):587–90. https://doi.org/10.1016/j.jpedsurg.2003.12.002.

Article  PubMed  Google Scholar 

Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol. 2007;178(4):635–48. https://doi.org/10.1083/jcb.200704152.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chatzeli L, Gaete M, Tucker AS. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development. 2017;144(12):2294–305. https://doi.org/10.1242/dev.146019.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Di Agostino S, Riccioli A, De Cesaris P, Fontemaggi G, Blandino G, Filippini A, et al. Circular RNAs in embryogenesis and cell differentiation with a focus on cancer development. Front Cell. Dev Biol. 2020;8:389. https://doi.org/10.3389/fcell.2020.00389.

Article  Google Scholar 

Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta. 2016;1859(1):163–8. https://doi.org/10.1016/j.bbagrm.2015.07.007.

CAS  Article  PubMed  Google Scholar 

Falcone RA Jr, Levitt MA, Peña A, Bates M. Increased heritability of certain types of anorectal malformations. J Pediatr Surg. 2007;42(1):124–7; discussion 127-8. https://doi.org/10.1016/j.jpedsurg.2006.09.012.

Article  PubMed  Google Scholar 

Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST. Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1108–18. https://doi.org/10.1152/ajpgi.00004.2009.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grano C, Bucci S, Aminoff D, Lucidi F, Violani C. Quality of life in children and adolescents with anorectal malformation. Pediatr Surg Int. 2013;29(9):925–30. https://doi.org/10.1007/s00383-013-3359-8.

Article  PubMed  Google Scholar 

Guil S, Esteller M. RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci. 2015;40(5):248–56. https://doi.org/10.1016/j.tibs.2015.03.001.

CAS  Article  PubMed  Google Scholar 

Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. Lack of beta-catenin affects mouse development at gastrulation. Development. 1995;121(11):3529–37. https://doi.org/10.1242/dev.121.11.3529.

CAS  Article  PubMed  Google Scholar 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doi.org/10.1038/nature11993.

CAS  Article  PubMed  Google Scholar 

Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140(20):4129–44. https://doi.org/10.1242/dev.091793.

CAS  Article  PubMed  Google Scholar 

Khanna K, Sharma S, Pabalan N, Singh N, Gupta DK. A review of genetic factors contributing to the etiopathogenesis of anorectal malformations. Pediatr Surg Int. 2018;34(1):9–20. https://doi.org/10.1007/s00383-017-4204-2.

Article  PubMed  Google Scholar 

Kim BM, Mao J, Taketo MM, Shivdasani RA. Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology. 2007;133(2):529–38. https://doi.org/10.1053/j.gastro.2007.04.072.

CAS  Article  PubMed  Google Scholar 

Kluth D. Embryology of anorectal malformations. Semin Pediatr Surg. 2010;19:201–8.

Article  Google Scholar 

Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20(12):1829–42. https://doi.org/10.1261/rna.047126.114.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee E, Elhassan S, Lim G, Kok WH, Tan SW, Leong EN, et al. The roles of circular RNAs in human development and diseases. Biomed Pharmacother. 2019;111:198–208. https://doi.org/10.1016/j.biopha.2018.12.052.

CAS  Article  PubMed  Google Scholar 

Li SY, Wang CY, Zhao JJ, Long CY, Xiao YX, Tang XB, et al. Upregulation of PPPDE1 contributes to anorectal malformations via the mitochondrial apoptosis pathway during hindgut development in rats. Exp Cell Res. 2021a;402(2):112574. https://doi.org/10.1016/j.yexcr.2021.112574.

CAS  Article  PubMed  Google Scholar 

Li SY, Wang CY, Xiao YX, Tang XB, Yuan ZW, Bai YZ. RNA-Seq profiling of circular RNAs during development of hindgut in rat embryos with ethylenethiourea-induced anorectal malformations. Front Genet. 2021b;12:605015. https://doi.org/10.3389/fgene.2021.605015.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu YR, Ba F, Cheng LJ, Li X, Zhang SW, Zhang SC. Efficacy of Sox10 promoter methylation in the diagnosis of intestinal neuronal dysplasia from the peripheral blood. Clin Transl Gastroenterol. 2019;10(12):e00093. https://doi.org/10.14309/ctg.0000000000000093.

Article  PubMed  PubMed Central  Google Scholar 

Long C, Xiao Y, Li S, Tang X, Yuan Z, Bai Y. Involvement of proliferative and apoptotic factors in the development of hindgut in rat fetuses with ethylenethiourea-induced anorectal malformations. Acta Histochem. 2020;122(1):151466. https://doi.org/10.1016/j.acthis.2019.151466.

CAS  Article  PubMed  Google Scholar 

Macedo M, Martins JL, Meyer KF. Evaluation of an experimental model for anorectal anomalies induced by ethylenethiourea. Acta Cir Bras. 2007;22(2):130–6. https://doi.org/10.1590/s0102-86502007000200010.

Article  PubMed  Google Scholar 

Mandhan P, Quan QB, Beasley S, Sullivan M. Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in ethylenethiourea-exposed fetal rats. J Pediatr Surg. 2006;41(12):2041–5. https://doi.org/10.1016/j.jpedsurg.2006.08.035.

Article  PubMed  Google Scholar 

Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481–91. https://doi.org/10.1038/s41418-022-00948-7.

CAS  Article  PubMed  Google Scholar 

Miyagawa S, Harada M, Matsumaru D, Tanaka K, Inoue C, Nakahara C, et al. Disruption of the temporally regulated cloaca endodermal β-catenin signaling causes anorectal malformations. Cell Death Differ. 2014;21(6):990–7. https://doi.org/10.1038/cdd.2014.21.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ng RC, Matsumaru D, Ho AS, Garcia-Barceló MM, Yuan ZW, Smith D, et al. Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations. Cell Death Differ. 2014;21(6):978–89. https://doi.org/10.1038/cdd.2014.20.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Qi BQ, Williams A, Beasley S, Frizelle F. Clarification of the process of separation of the cloaca into rectum and urogenital sinus in the rat embryo. J Pediatr Surg. 2000a;35(12):1810–6. https://doi.org/10.1053/jpsu.2000.19265.

CAS  Article  PubMed  Google Scholar 

Qi BQ, Beasley SW, Williams AK, Fizelle F. Apoptosis during regression of the tailgut and septation of the cloaca. J Pediatr Surg. 2000b;35(11):1556–61. https://doi.org/10.1053/jpsu.2000.18309.

CAS  Article  PubMed  Google Scholar 

Qi BQ, Beasley SW, Frizelle FA. Clarification of the processes that lead to anorectal malformations in the ETU-induced rat model of imperforate anus. J Pediatr Surg. 2002;37(9):1305–12. https://doi.org/10.1053/jpsu.2002.34996.

Article  PubMed  Google Scholar 

Sasaki C, Yamaguchi K, Akita K. Spatiotemporal distribution of apoptosis during normal cloacal development in mice. Anat Rec A Discov Mol Cell Evol Biol. 2004;279(2):761–7. https://doi.org/10.1002/ar.a.20062.

Article  PubMed  Google Scholar 

Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell. 2002;3(2):167–70. https://doi.org/10.1016/s1534-5807(02)00223-x.

CAS  Article  PubMed  Google Scholar 

Shi Z, Chiang CI, Mistretta TA, Major A, Mori-Akiyama Y. SOX9 directly regulates IGFBP-4 in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol. 2013;305(1):G74–83. https://doi.org/10.1152/ajpgi.00086.2013.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Song H, Park KH. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67(Pt 1):12–23. https://doi.org/10.1016/j.semcancer.2020.04.008.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif