Racial disparities in breast cancer preclinical and clinical models

American Cancer Society. Breast Cancer Facts and Figures 2019–2020 [Internet]. 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf

SEER*Explorer Application [Internet]. [cited 2021 May 29]. https://seer.cancer.gov/explorer/application.html?site=55&data_type=1&graph_type=10&compareBy=race&chk_race_1=1&chk_race_4=4&chk_race_3=3&chk_race_6=6&chk_race_8=8&series=9&sex=3&age_range=1&stage=101&advopt_precision=1&advopt_show_ci=on&advopt_display=2

DeSantis CE, Siegel RL, Sauer AG, Miller KD, Fedewa SA, Alcaraz KI, et al. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA A Cancer J Clin Am Cancer Soc. 2016;66:290–308.

Article  Google Scholar 

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA A Cancer J Clin Am Cancer Soc. 2018;68:7–30.

Article  Google Scholar 

Flores NJ, Mathew MJ, Fortson LS, Abernethy AD, Ashing KT. The Influence of Culture, Social, and Religious Support on Well-Being in Breast Cancer Survivorship. 2021;

Sutton AL, He J, Edmonds MC, Sheppard VB. Medical mistrust in black breast cancer patients: acknowledging the roles of the trustor and the trustee. J Cancer Educ. 2019;34:600–7.

Article  Google Scholar 

Krieger N. Health equity and the fallacy of treating causes of population health as if they sum to 100%. Am J Public Health 2017 [cited 2021 May 29]. p. 541–9. /pmc/articles/PMC5343713/

Wang S, Qian F, Zheng Y, Ogundiran T, Ojengbede O, Zheng W, et al. Genetic variants demonstrating flip-flop phenomenon and breast cancer risk prediction among women of African ancestry. Breast Cancer Res Treat. 2018;168:703–12.

CAS  Article  Google Scholar 

Badal S, Campbell KS, Valentine H, Ragin C. The need for cell lines from diverse ethnic backgrounds for prostate cancer research. Nat Rev Urol; 2019 [cited 2021 May 30]. p. 691–2. Available from: https://www.nature.com/articles/s41585-019-0234-y

Cancer Panels | ATCC [Internet]. [cited 2021 May 30]. Available from: https://www.atcc.org/cell-products/human-cells/cancer-panels

Stead LA, Lash TL, Sobieraj JE, Chi DD, Westrup JL, Charlot M, et al. Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res. 2009;11:R18.

Article  Google Scholar 

Prakash O, Hossain F, Danos D, Lassak A, Scribner R, Miele L. Racial disparities in triple negative breast cancer: a review of the role of biologic and non-biologic factors. Front Public Health; 2020. p. 576964. Available from: www.frontiersin.org

Synnott NC, Bauer MR, Madden S, Murray A, Klinger R, O’Donovan N, et al. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Preclinical investigation with the anti-p53 drug, PK11007. Cancer Lett Elsevier Ireland Ltd. 2018;414:99–106.

CAS  Google Scholar 

ATCC: The Global Bioresource Center | ATCC [Internet]. [cited 2021 May 30]. https://www.atcc.org/

SIB Swiss Institute of Bioinformatics | Expasy [Internet]. [cited 2021 May 30]. https://www.expasy.org/

Costa E, Ferreira-Gonçalves T, Chasqueira G, Cabrita AS, Figueiredo I v., Reis CP. Experimental models as refined translational tools for breast cancer research [Internet]. Scientia Pharmaceutica. MDPI AG; 2020 [cited 2021 May 30]. p. 1–29. www.mdpi.com/journal/scipharm

Lee A v., Oesterreich S, Davidson NE. MCF-7 Cells - Changing the Course of Breast Cancer Research and Care for 45 Years [Internet]. Journal of the National Cancer Institute. Oxford University Press; 2015 [cited 2021 May 30]. p. 73. https://academic.oup.com/jnci/article/107/7/djv073/912073

Kalous O, Conklin D, Desai AJ, Dering J, Goldstein J, Ginther C, et al. AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat. 2013;141:397–408.

CAS  Article  Google Scholar 

Catania A, Barrajón-Catalán E, Nicolosi S, Cicirata F, Micol V. Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res Treat. 2013;141:55–65.

CAS  Article  Google Scholar 

Hurvitz SA, Kalous O, Conklin D, Desai AJ, Dering J, Anderson L, et al. In vitro activity of the mTOR inhibitor everolimus, in a large panel of breast cancer cell lines and analysis for predictors of response. Breast Cancer Research and Treatment. 2015;149:669–80.

CAS  Article  Google Scholar 

Kalous O, Conklin D, Desai AJ, O’Brien NA, Ginther C, Anderson L, et al. Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol Cancer Therapeut. 2012;11:1978–87.

CAS  Article  Google Scholar 

Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res BioMed Central. 2009;11:1–13.

Google Scholar 

Scientific American. Clinical Trials Have Far Too Little Racial and Ethnic Diversity - Scientific American [Internet]. 2018 [cited 2021 May 30]. https://www.scientificamerican.com/article/clinical-trials-have-far-too-little-racial-and-ethnic-diversity/

Murayama T, Gotoh N. Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells. 2019;8:621.

CAS  Article  Google Scholar 

Costa E, Ferreira-Gonçalves T, Chasqueira G, Cabrita AS, Figueiredo I v., Reis CP. Experimental models as refined translational tools for breast cancer research [Internet]. Scientia Pharmaceutica. MDPI AG; 2020 [cited 2021 May 28]. p. 1–29. www.mdpi.com/journal/scipharm

Yu J, Huang W. The progress and clinical application of breast cancer organoids. Int J Stem Cells. 2020;13:295–304.

Article  Google Scholar 

Cole MP, Jones CTA, Todd IDH. A new anti-oestrogenic agent in late breast cancer an early clinical appraisal of ICI46474. Br J Cancer. 1971;25:270–5.

CAS  Article  Google Scholar 

Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 1998;90:1371–88.

CAS  Article  Google Scholar 

Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and Letrozole in advanced breast cancer. New Engl J Med. 2016;375:1925–36.

CAS  Article  Google Scholar 

Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab Emtansine for HER2-Positive advanced breast cancer. New Engl J Med. 2012;367:1783–91.

CAS  Article  Google Scholar 

Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-positive metastatic breast cancer. New Engl J Med. 2020;382:597–609.

CAS  Article  Google Scholar 

Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. New Engl J Med. 2018;379:2108–21.

CAS  Article  Google Scholar 

Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, et al. Trastuzumab Deruxtecan in previously treated HER2-positive breast cancer. New Engl J Med. 2020;382:610–21.

CAS  Article  Google Scholar 

Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, et al. Palbociclib in hormone-receptor–positive advanced breast cancer. New Engl J Med. 2015;373:209–19.

CAS  Article  Google Scholar 

Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, Trastuzumab, and Docetaxel in HER2-positive metastatic breast cancer. New Engl J Med. 2015;372:724–34.

CAS  Article  Google Scholar 

Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-Positive Breast Cancer. New Engl J Med. 2015;372:134–41.

Article  Google Scholar 

Bear HD, Tang G, Rastogi P, Geyer CE, Robidoux A, Atkins JN, et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. New Engl J Med. 2012;366:310–20.

CAS  Article  Google Scholar 

O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. New Engl J Med. 2011;364:205–14.

Article  Google Scholar 

Wahby S, Fashoyin-Aje L, Osgood CL, Cheng J, Fiero MH, Zhang L, et al. FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin Cancer Res Am Assoc Cancer Res; 2021. p. 1850–4. https://clincancerres.aacrjournals.org/content/27/7/1850

Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. New Engl J Med. 2019;380:741–51.

CAS  Article  Google Scholar 

Albain KS, Unger JM, Crowley JJ, Coltman CA, Hershman DL. Racial disparities in cancer survival among randomized clinical trials patients of the southwest oncology group. JNCI. 2009;101:984.

Article  Google Scholar 

McCaskill-Stevens W, Wilson J, Bryant J, Mamounas E, Garvey L, James J, et al. Contralateral breast cancer and thromboembolic events in African American women treated with tamoxifen. J Natl Cancer Inst. 2004;96:1762–9.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif