New insights into macrophage subsets in atherosclerosis

Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355

CAS  PubMed  PubMed Central  Article  Google Scholar 

Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262(1):153–166

CAS  PubMed  Article  Google Scholar 

Brosseau C et al (2018) CD9 Tetraspanin: a new pathway for the regulation of inflammation? Front Immunol 9:2316

PubMed  PubMed Central  Article  CAS  Google Scholar 

Skålén K et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890):750–754

PubMed  Article  CAS  Google Scholar 

Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12(3):204–212

CAS  PubMed  Article  Google Scholar 

Yu EPK, Bennett MR (2014) Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab 25(9):481–487

CAS  PubMed  Article  Google Scholar 

Shemiakova T et al (2020) Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis. Biomeds 8(6)

Uryga A, Gray K, Bennett M (2016) DNA damage and repair in vascular disease. Annu Rev Physiol 78:45–66

CAS  PubMed  Article  Google Scholar 

Harry BL et al (2008) Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 28(11):2003–2008

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tomas L, Prica F, Schulz C (2021) Trafficking of mononuclear phagocytes in healthy arteries and atherosclerosis. Front Immunol 12:718432

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chinetti-Gbaguidi G, Colin S, Staels B (2015) Macrophage subsets in atherosclerosis. Nat Rev Cardiol 12(1):10–17

CAS  PubMed  Article  Google Scholar 

Cochain C, Zernecke A (2017) Macrophages in vascular inflammation and atherosclerosis. Pflugers Arch 469(3–4):485–499

CAS  PubMed  Article  Google Scholar 

Tabas I, Bornfeldt KE (2016) Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118(4):653–667

CAS  PubMed  PubMed Central  Article  Google Scholar 

Robbins CS et al (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19(9):1166–1172

CAS  PubMed  PubMed Central  Article  Google Scholar 

Koelwyn GJ et al (2018) Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 19(6):526–537

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hansson GK, Libby P, Tabas I (2015) Inflammation and plaque vulnerability. J Intern Med 278(5):483–493

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mezentsev A et al (2021) Proatherogenic sialidases and desialylated lipoproteins: 35 years of research and current state from bench to bedside. Biomedicines 9(6)

Demina EP et al (2021) Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages. J Am Heart Assoc 10(4):e018756

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aksenov DV et al (2008) Deglycosylation of apo B-containing lipoproteins increase their ability to aggregate and to promote intracellular cholesterol accumulation in vitro. Arch Physiol Biochem 114(5):349–356

CAS  PubMed  Article  Google Scholar 

Tertov VV et al (1992) Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation. Circ Res 71(1):218–228

CAS  PubMed  Article  Google Scholar 

Orekhov AN et al (1991) Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation. Arterioscler Thromb 11(2): 316–26

Mills CD et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

CAS  PubMed  Article  Google Scholar 

Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

CAS  PubMed  PubMed Central  Article  Google Scholar 

Murray PJ et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bashir S et al (2016) Macrophage polarization: the link between inflammation and related diseases. Inflamm Res 65(1):1–11

CAS  PubMed  Article  Google Scholar 

Chinetti-Gbaguidi G et al (2011) Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPAR gamma and LXR alpha pathways. Circ Res 108(8):985–995

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shapouri-Moghaddam A et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440

CAS  PubMed  Article  Google Scholar 

Kiselev V, Andrews T, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20(5):273–282

CAS  PubMed  Article  Google Scholar 

Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810

PubMed  Article  CAS  Google Scholar 

Islam S et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167

CAS  PubMed  PubMed Central  Article  Google Scholar 

Islam S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166

CAS  PubMed  Article  Google Scholar 

Iqbal F et al (2021) Harnessing single-cell RNA sequencing to better understand how diseased cells behave the way they do in cardiovascular disease. Arterioscler Thromb Vasc Biol 41(2):585–600

CAS  PubMed  Article  Google Scholar 

Olsen TK, Baryawno N (2018) Introduction to single-cell RNA sequencing. Curr Prots Mol Biol 122(1)

Potter SS (2018) Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 14(8):479–492

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yifan C, Fan Y, Jun P (2020) Visualization of cardiovascular development, physiology and disease at the single-cell level: opportunities and future challenges. J Mol Cell Cardiol 142:80–92

PubMed  Article  CAS  Google Scholar 

Winkels H et al (2018) Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 122(12):1675–1688

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim K et al (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123(10):1127–1142

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cochain C et al (2018) Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122(12):1661–1674

CAS  PubMed  Article  Google Scholar 

Lin JD et al (2019) Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4(4)

Gu W et al (2019) Adventitial cell atlas of wt (wild type) and ApoE (apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler Thromb Vasc Biol 39(6):1055–1071

CAS  PubMed  PubMed Central  Article  Google Scholar 

Depuydt MA et al (2020) Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res

Fernandez DM et al (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25(10):1576–1588

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif