Yeast PI31 inhibits the proteasome by a direct multisite mechanism

Bard, J. A. M. et al. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 87, 697–724 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rousseau, A. & Bertolotti, A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19, 697–712 (2018).

CAS  PubMed  Article  Google Scholar 

Tomko, R. J.Jr. & Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415–445 (2013).

CAS  PubMed  Article  Google Scholar 

Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006).

CAS  PubMed  Article  Google Scholar 

Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413 (2006).

CAS  PubMed  Article  Google Scholar 

Hanna, J., Waterman, D., Boselli, M. & Finley, D. Spg5 protein regulates the proteasome in quiescence. J. Biol. Chem. 287, 34400–34409 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hanna, J. et al. Cuz1/Ynl155w, a zinc-dependent ubiquitin-binding protein, protects cells from metalloid-induced proteotoxicity. J. Biol. Chem. 289, 1876–1885 (2014).

CAS  PubMed  Article  Google Scholar 

Sá-Moura, B. et al. A conserved protein with AN1 zinc finger and ubiquitin-like domains modulates Cdc48 (p97) function in the ubiquitin-proteasome pathway. J. Biol. Chem. 288, 33682–33696 (2013).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lee, D., Takayama, S. & Goldberg, A. L. ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation. Proc. Natl Acad. Sci. USA 115, E9550–E9559 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Shi, Y. et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351, 6275 (2016).

Article  CAS  Google Scholar 

Chu-Ping, M., Slaughter, C. A. & DeMartino, G. N. Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1119, 303–311 (1992).

CAS  Article  Google Scholar 

Hatanaka, A. et al. Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex. Genes Genet. Syst. 86, 305–314 (2011).

CAS  PubMed  Article  Google Scholar 

Zaiss, D. M. W., Standera, S., Holzhütter, H., Kloetzel, P.-M. & Sijts, A. J. A. M. The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett. 457, 333–338 (1999).

CAS  PubMed  Article  Google Scholar 

McCutchen-Maloney, S. L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem. 275, 18557–18565 (2000).

CAS  PubMed  Article  Google Scholar 

Yashiroda, H. et al. N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol. Cell. Biol. 35, 141–152 (2015).

PubMed  Article  CAS  Google Scholar 

Velichutina, I., Connerly, P. L., Arendt, C. S., Li, X. & Hochstrasser, M. Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J. 23, 500–510 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Emori, Y. et al. Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol. Cell. Biol. 11, 344–353 (1991).

CAS  PubMed  PubMed Central  Google Scholar 

Sadre-Bazzaz, K., Whitby, F. G., Robinson, H., Formosa, T. & Hill, C. P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728–735 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rêgo, A. T. & da Fonseca, P. C. A. Characterization of fully recombinant human 20S and 20S-PA200 proteasome complexes. Mol. Cell 76, 138–147.e5 (2019).

Article  CAS  Google Scholar 

Guerra-Moreno, A. & Hanna, J. Tmc1 is a dynamically regulated effector of the Rpn4 proteotoxic stress response. J. Biol. Chem. 291, 14788–14795 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Edskes, H. K., Stroobant, E. E., DeWilde, M. P., Bezsonov, E. E. & Wickner, R. B. Proteasome control of [URE3] prion propagation by degradation of anti-prion proteins Cur1 and Btn2 in Saccharomyces cerevisiae. Genetics 218, iyab037 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Blackburn, C. et al. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S β5-subunit. Biochem. J. 430, 461–476 (2010).

CAS  PubMed  Article  Google Scholar 

Huber, E. M. et al. Systematic analyses of substrate preferences of 20S proteasomes using peptidic epoxyketone inhibitors. J. Am. Chem. Soc. 137, 7835–7842 (2015).

CAS  PubMed  Article  Google Scholar 

Köhler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).

PubMed  Article  Google Scholar 

Kirk, R. et al. Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J. Biol. Chem. 283, 22325–22335 (2008).

CAS  PubMed  Article  Google Scholar 

Kao, A. et al. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics 10, M110.002170 (2011).

Article  CAS  Google Scholar 

Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433–451 (1992).

CAS  PubMed  Article  Google Scholar 

Schnell, H. M. et al. Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis. Nat. Struct. Mol. Biol. 28, 418–425 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shang, J., Huang, X. & Du, Z. The FP domains of PI31 and Fbxo7 have the same protein fold but very different modes of protein–protein interaction. J. Biomol. Struct. Dyn. 33, 1528–1538 (2015).

CAS  PubMed  Article  Google Scholar 

Li, X., Thompson, D., Kumar, B. & DeMartino, G. N. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J. Biol. Chem. 289, 17392–17405 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, C.-W., Corboy, M. J., DeMartino, G. N. & Thomas, P. J. Endoproteolytic activity of the proteasome. Science 299, 408–411 (2003).

CAS  PubMed  Article  Google Scholar 

Groll, M. et al. Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 386, 463–471 (1997).

CAS  PubMed  Article  Google Scholar 

Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).

CAS  PubMed  Article  Google Scholar 

Cho-Park, P. F. & Steller, H. Proteasome regulation by ADP-ribosylation. Cell 153, 614–627 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, K. et al. PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development. Dev. Cell 50, 509–524.e10 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhao, L. et al. A rare variant nonparametric linkage method for nuclear and extended pedigrees with application to late-onset Alzheimer disease via WGS data. Am. J. Hum. Genet. 105, 822–835 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Minis, A. et al. The proteasome regulator PI31 is required for protein homeostasis, synapse maintenance, and neuronal survival in mice. Proc. Natl Acad. Sci. 116, 24639–24650 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wani, P. S., Rowland, M. A., Ondracek, A., Deeds, E. J. & Roelofs, J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat. Commun. 6, 6384 (2015).

CAS  PubMed  Article  Google Scholar 

Leggett, D.

留言 (0)

沒有登入
gif