Prototype mouse models for researching SEND-based mRNA delivery and gene therapy

Cong, L. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

CAS  Article  Google Scholar 

Mali, P. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

CAS  Article  Google Scholar 

Uddin, F., Rudin, C. M. & Sen, T. CRISPR gene therapy: applications, limitations, and implications for the future. Front. Oncol. 10, 1387 (2020).

Article  Google Scholar 

Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

CAS  Article  Google Scholar 

Riecken, K., Głów, D. & Fehse, B. How to package and SEND mRNA: a novel “humanized” vector system based on endogenous retroviruses. Signal Transduct. Target. Ther. 6, 384 (2021).

CAS  Article  Google Scholar 

Kingwell, K. Hitting SEND on mRNA delivery. Nat. Rev. Drug Discov. 20, 738–738 (2021).

CAS  Article  Google Scholar 

Yung, N. K., Maassel, N. L., Ullrich, S. J., Ricciardi, A. S. & Stitelman, D. H. A narrative review of in utero gene therapy: advances, challenges, and future considerations. Transl. Pediatr. 10, 1486–1496 (2021).

Article  Google Scholar 

Ono, R. et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38, 101–106 (2006).

CAS  Article  Google Scholar 

Pastuzyn, E. D. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275–288.e18 (2018).

CAS  Article  Google Scholar 

Dejneka, N. S. et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol. Ther. 9, 182–188 (2004).

CAS  Article  Google Scholar 

Ito, H. et al. In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells. Mol. Psychiatry 20, 459–471 (2015).

CAS  Article  Google Scholar 

Wang, S. et al. AAV gene therapy prevents and reverses heart failure in a murine knockout model of Barth syndrome. Circ. Res. 126, 1024–1039 (2020).

CAS  Article  Google Scholar 

Kim, M.-A. et al. Methionine sulfoxide reductase B3-targeted in utero gene therapy rescues hearing function in a mouse model of congenital sensorineural hearing loss. Antioxid. Redox Signal. 24, 590–602 (2016).

CAS  Article  Google Scholar 

Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

CAS  Article  Google Scholar 

Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422.e27 (2020).

CAS  Article  Google Scholar 

Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

CAS  Article  Google Scholar 

Miura, H. et al. Novel reporter mouse models useful for evaluating in vivo gene editing and for optimization of methods of delivering genome editing tools. Mol. Ther. Nucleic Acids 24, 325–336 (2021).

CAS  Article  Google Scholar 

Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

CAS  Article  Google Scholar 

Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

CAS  Article  Google Scholar 

Ohtsuka, M. et al. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies. Cell Tissue Res. 350, 251–260 (2012).

Article  Google Scholar 

Quadros, R. M. et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18, 92 (2017).

Article  Google Scholar 

Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2018).

CAS  Article  Google Scholar 

Gurumurthy, C. B. et al. Genetically modified mouse models to help fight COVID-19. Nat. Protoc. 15, 3777–3787 (2020).

CAS  Article  Google Scholar 

Gurumurthy, C. B., Saunders, T. L. & Ohtsuka, M. Designing and generating a mouse model: frequently asked questions. J. Biomed. Res. 35, 76–90 (2021).

Article  Google Scholar 

Gurumurthy, C. B. CRISPR: a versatile tool for both forward and reverse genetics research. Hum. Genet. 135, 971–976 (2016).

CAS  Article  Google Scholar 

Kuhn, M., Santinha, A. J. & Platt, R. J. Moving from in vitro to in vivo CRISPR screens. Gene Genome Ed. 2, 100008 (2021).

Article  Google Scholar 

Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

CAS  Article  Google Scholar 

Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif