Synthesis of a low-valent Al4+ cluster cation salt

Dohmeier, C., Robl, C., Tacke, M. & Schnöckel, H. The tetrameric aluminum(I) compound [4]. Angew. Chem. Int. Ed. 30, 564–565 (1991).

Article  Google Scholar 

Sitzmann, H., Lappert, M. F., Dohmeier, C., Üffing, C. & Schnöckel, H. Cyclopentadienylderivate von aluminium(I). J. Organomet. Chem. 561, 203–208 (1998).

CAS  Article  Google Scholar 

Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

CAS  PubMed  Article  Google Scholar 

Weetman, C. & Inoue, S. The road travelled: after main‐group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

CAS  Article  Google Scholar 

Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

CAS  PubMed  Article  Google Scholar 

Yadav, S., Saha, S. & Sen, S. S. Compounds with low-valent p-block elements for small molecule activation and catalysis. ChemCatChem 8, 486–501 (2016).

CAS  Article  Google Scholar 

Hobson, K., Carmalt, C. J. & Bakewell, C. Recent advances in low oxidation state aluminium chemistry. Chem. Sci. 11, 6942–6956 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Roesky, H. W. & Kumar, S. S. Chemistry of aluminium(I). Chem. Commun. (2005).

Weetman, C., Xu, H. & Inoue, S. in Encyclopedia of Inorganic and Bioinorganic Chemistry (ed. Scott, R. A.) 1–20 (Wiley, 2011).

Schnepf, A. & Schnöckel, H. Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew. Chem. Int. Ed. 41, 3532–3554 (2002).

CAS  Article  Google Scholar 

Schnöckel, H. Metalloid Al- and Ga-clusters: a novel dimension in organometallic chemistry linking the molecular and the solid-state areas? Dalton Trans. (2005).

Ecker, A., Weckert, E. & Schnöckel, H. Synthesis and structural characterization of an AI77 cluster. Nature 387, 379–381 (1997).

CAS  Article  Google Scholar 

Vollet, J., Hartig, J. R. & Schnöckel, H. Al50C120H180: a pseudofullerene shell of 60 carbon atoms and 60 methyl groups protecting a cluster core of 50 aluminum atoms. Angew. Chem. Int. Ed. 43, 3186–3189 (2004).

CAS  Article  Google Scholar 

Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [Al] (Ar=2,6–iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

CAS  Article  Google Scholar 

Hofmann, A., Tröster, T., Kupfer, T. & Braunschweig, H. Monomeric Cp3tAl(i): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 10, 3421–3428 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

CAS  Article  Google Scholar 

Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

CAS  PubMed  Article  Google Scholar 

Roy, M. M. D. et al. Probing the extremes of covalency in M–Al bonds: lithium and zinc aluminyl compounds. Angew. Chem. Int. Ed. 60, 22301–22306 (2021).

CAS  Article  Google Scholar 

Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Reversible, room-temperature C–C bond activation of benzene by an isolable metal complex. J. Am. Chem. Soc. 141, 11000–11003 (2019).

CAS  PubMed  Article  Google Scholar 

Schwamm, R. J., Anker, M. D., Lein, M. & Coles, M. P. Reduction vs. addition: the reaction of an aluminyl anion with 1,3,5,7-cyclooctatetraene. Angew. Chem. Int. Ed. 58, 1489–1493 (2019).

CAS  Article  Google Scholar 

Schwamm, R. J. et al. A stable calcium alumanyl. Angew. Chem. Int. Ed. 59, 3928–3932 (2020).

CAS  Article  Google Scholar 

Grams, S., Eyselein, J., Langer, J., Färber, C. & Harder, S. Boosting low-valent aluminum(I) reactivity with a potassium reagent. Angew. Chem. Int. Ed. 59, 15982–15986 (2020).

CAS  Article  Google Scholar 

Kurumada, S., Takamori, S. & Yamashita, M. An alkyl-substituted aluminium anion with strong basicity and nucleophilicity. Nat. Chem. 12, 36–39 (2020).

CAS  PubMed  Article  Google Scholar 

Koshino, K. & Kinjo, R. Construction of σ-aromatic AlB2 ring via borane coupling with a dicoordinate cyclic (alkyl)(amino)aluminyl anion. J. Am. Chem. Soc. 142, 9057–9062 (2020).

CAS  PubMed  Article  Google Scholar 

Roy, M. M. D., Heilmann, A., Ellwanger, M. A. & Aldridge, S. Generation of a π-bonded isomer of P44− by aluminyl reduction of white phosphorus and its ammonolysis to PH3. Angew. Chem. Int. Ed. 60, 26550–26554 (2021).

CAS  Article  Google Scholar 

Anker, M. D., McMullin, C. L., Rajabi, N. A. & Coles, M. P. Carbon–carbon bond forming reactions promoted by aluminyl and alumoxane anions: introducing the ethenetetraolate ligand. Angew. Chem. Int. Ed. 59, 12806–12810 (2020).

CAS  Article  Google Scholar 

Evans, M. J., Anker, M. D., McMullin, C. L., Neale, S. E. & Coles, M. P. Dihydrogen activation by lithium- and sodium-aluminyls. Angew. Chem. Int. Ed. 60, 22289–22292 (2021).

CAS  Article  Google Scholar 

Koshino, K. & Kinjo, R. Fragmentation of white phosphorus by a cyclic (alkyl)(amino)alumanyl anion. Organometallics 39, 4183–4186 (2020).

CAS  Article  Google Scholar 

Kurumada, S., Sugita, K., Nakano, R. & Yamashita, M. A meta-selective C–H alumination of mono-substituted benzene by using an alkyl-substituted Al anion through hydride-eliminating SN Ar reaction. Angew. Chem. Int. Ed. 59, 20381–20384 (2020).

CAS  Article  Google Scholar 

Queen, J. D., Lehmann, A., Fettinger, J. C., Tuononen, H. M. & Power, P. P. The monomeric alanediyl:AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): an organoaluminum(I) compound with a one-coordinate aluminum atom. J. Am. Chem. Soc. 142, 20554–20559 (2020).

CAS  PubMed  Article  Google Scholar 

Hinz, A. & Müller, M. P. Attempted reduction of a carbazolyl-diiodoalane. Chem. Commun. 57, 12532–12535 (2021).

CAS  Article  Google Scholar 

Zhang, X. & Liu, L. L. A free aluminylene with diverse σ-donating and doubly σ/π-accepting ligand features for transition metals. Angew. Chem. Int. Ed. 60, 27062–27069 (2021).

CAS  Article  Google Scholar 

Zhang, X. & Liu, L. L. Modulating the frontier orbitals of an aluminylene for facile dearomatization of inert arenes. Angew. Chem. Int. Ed. (2022).

Queen, J. D., Irvankoski, S., Fettinger, J. C., Tuononen, H. M. & Power, P. P. A monomeric aluminum imide (iminoalane) with Al–N triple-bonding: bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 143, 6351–6356 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klemp, C., Stößer, S., Krossing, I. & Schnöckel, H. Al5Br7⋅5 THF—the first saltlike aluminum subhalide. Angew. Chem. Int. Ed. 39, 3691–3694 (2000).

CAS  Article  Google Scholar 

Franz, D. & Inoue, S. Cationic complexes of boron and aluminum: an early 21st century viewpoint. Chem. Eur. J. 25, 2898–2926 (2019).

CAS  PubMed  Article  Google Scholar 

Dabringhaus, P., Barthélemy, A. & Krossing, I. The coordination chemistry and clustering of subvalent Ga+ and In+ upon addition of σ‐donor ligands. Z. Anorg. Allg. Chem. (2021).

Glootz, K. et al. Why do five Ga+ cations form a ligand-stabilized Ga55+ pentagon and how does a 5:1 salt pack in the solid state? Angew. Chem. Int. Ed. 58, 14162–14166 (2019).

CAS  Article  Google Scholar 

Higelin, A., Keller, S., Göhringer, C., Jones, C. & Krossing, I. Unusual tilted carbene coordination in carbene complexes of gallium(I) and indium(I). Angew. Chem. Int. Ed. 52, 4941–4944 (2013).

CAS  Article  Google Scholar 

Higelin, A., Sachs, U., Keller, S. & Krossing, I. Univalent gallium and indium phosphane complexes: from pyramidal M(PPh3)3(+) to carbene-analogous bent M(PtBu3)2(+) (M=Ga, In) complexes. Chem. Eur. J. 18, 10029–10034 (2012).

CAS  PubMed  Article  Google Scholar 

Lichtenthaler, M. R. et al. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2′-bipyridine. Nat. Commun. 6, 8288 (2015).

CAS  PubMed  Article  Google Scholar 

Wehmschulte, R. J., Peverati, R. & Powell, D. R. Convenient access to gallium(I) cations through hydrogen elimination from cationic gallium(III) hydrides. Inorg. Chem. 58, 12441–12445 (2019).

CAS  PubMed  Article  Google Scholar 

Inomata, K., Watanabe, T., Miyazaki, Y. & Tobita, H. Insertion of a cationic metallogermylene into E–H bonds (E = H, B, Si). J. Am. Chem. Soc. 137, 11935–11937 (2015).

CAS  PubMed  Article  Google Scholar 

Morris, L. J., Carpentier, A., Maron, L. & Okuda, J. Reductive elimination of [AlH2]+ from a cationic Ga–Al dihydride. Chem. Commun. 57, 9454–9457 (2021).

CAS  Article  Google Scholar 

Ganesamoorthy, C. et al. Reductive elimination: a pathway to low-valent aluminium species. Chem. Commun. 49, 2858–2860 (2013).

CAS  Article  Google Scholar 

Purath, A. & Schnöckel, H. Tetrakis[tris(trimethylsilyl)silylaluminium(I)] Al4[Si(SiMe3)3]4—eine siliziumreicheVerbindung mit zentralem tetraedrischem Al4-Kern. J. Organomet. Chem. 579, 373–375 (1999).

CAS  Article  Google Scholar 

Schnepf, A., Köppe, R. & Schnöckel, H. A Ga8R6 cluster as an ideal

留言 (0)

沒有登入
gif