Alpinumisoflavone against cancer pro-angiogenic targets: In silico, In vitro, and In ovo evaluation

Who.int. Cancer. 2022. [online] Available at: https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 22 Feb 2022.

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  PubMed  Google Scholar 

Lambert AW, Pattabiraman DR, Weinberg RA. Emerging Biological Principles of Metastasis. Cell. 2017;168(4):670–91. https://doi.org/10.1016/j.cell.2016.11.037.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. https://doi.org/10.1056/NEJM197111182852108.

CAS  Article  PubMed  Google Scholar 

Qin S, Li A, Yi M, Yu S, Zhang M, Wu K. Recent advances on antiangiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol. 2019;12(1):27. https://doi.org/10.1186/s13045-019-0718-5.

Article  PubMed  PubMed Central  Google Scholar 

Zuazo-Gaztelu I, Casanovas O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front Oncol. 2018;8:248. https://doi.org/10.3389/fonc.2018.00248.

Article  PubMed  PubMed Central  Google Scholar 

Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52(Pt 2):117–24. https://doi.org/10.1016/j.semcancer.2017.12.002.

CAS  Article  PubMed  Google Scholar 

Lin Z, Zhang Q, Luo W. Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur J Pharmacol. 2016;793:76–81. https://doi.org/10.1016/j.ejphar.2016.10.039.

CAS  Article  PubMed  Google Scholar 

Lee S, Hoang GD, Kim D, et al. Efficacy of Alpinumisoflavone Isolated from Maclura tricuspidata Fruit in Tumor Necrosis Factor-α-Induced Damage of Human Dermal Fibroblasts. Antioxidants (Basel). 2021;10(4):514. https://doi.org/10.3390/antiox10040514.

CAS  Article  Google Scholar 

Li P-Y, Liang Y-C, Sheu M-J, et al. Alpinumisoflavone attenuates lipopolysaccharide-induced acute lung injury by regulating the effects of anti-oxidation and anti-inflammation both in vitro and in vivo. RSC Adv. 2018;8(55):31515–28. https://doi.org/10.1039/c8ra04098b.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Han Y, Yang X, Zhao N, Peng J, Gao H, Qiu X. Alpinumisoflavone induces apoptosis in esophageal squamous cell carcinoma by modulating miR-370/PIM1 signaling. Am J Cancer Res. 2016;6(12):2755–71.

CAS  PubMed  PubMed Central  Google Scholar 

Kuete V, Mbaveng AT, Nono EC, et al. Cytotoxicity of seven naturally occurring phenolic compounds towards multi-factorial drug-resistant cancer cells. Phytomedicine. 2016;23(8):856–63. https://doi.org/10.1016/j.phymed.2016.04.007.

CAS  Article  PubMed  Google Scholar 

Kumar S, Pathania AS, Saxena AK, Vishwakarma RA, Ali A, Bhushan S. The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells. Chem Biol Interact. 2013;205(2):128–37. https://doi.org/10.1016/j.cbi.2013.06.020.

CAS  Article  PubMed  Google Scholar 

Wang Y, Liu J, Pang Q, Tao D. Alpinumisoflavone protects against glucocorticoid-induced osteoporosis through suppressing the apoptosis of osteoblastic and osteocytic cells. Biomed Pharmacother. 2017;96:993–9. https://doi.org/10.1016/j.biopha.2017.11.136.

CAS  Article  PubMed  Google Scholar 

Zhang Y, Yang H, Sun M, et al. Alpinumisoflavone suppresses hepatocellular carcinoma cell growth and metastasis via NLRP3 inflammasome-mediated pyroptosis. Pharmacol Rep. 2020;72(5):1370–82. https://doi.org/10.1007/s43440-020-00064-8.

CAS  Article  PubMed  Google Scholar 

Zhang B, Fan X, Wang Z, Zhu W, Li J. Alpinumisoflavone radiosensitizes esophageal squamous cell carcinoma through inducing apoptosis and cell cycle arrest. Biomed Pharmacother. 2017;95:199–206. https://doi.org/10.1016/j.biopha.2017.08.048.

CAS  Article  PubMed  Google Scholar 

Alos HC, Billones JB, Vasquez RD, Castillo AL. Antiangiogenesis potential of alpinumisoflavone as an inhibitor of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor receptor-2 (VEGFR-2). Curr Enzym Inhib. 2020;15(3):159–78. https://doi.org/10.2174/1573408016666200123160509.

CAS  Article  Google Scholar 

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–50. https://doi.org/10.1007/978-1-4939-2269-7_19.

CAS  Article  PubMed  Google Scholar 

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang R, Lu Y, Wang S. Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem. 2003;46(12):2287–303. https://doi.org/10.1021/jm0203783.

CAS  Article  PubMed  Google Scholar 

Roldan MJ, Chin T, Castillo A, Villaflores O. Cytotoxic and angiosuppresive potentials of Zehneria japonica (Thund. Ex. Murray) S.K.Chen (Cucurbitaceae) crude leaf extracts. Phil J Health Res Dev. 2018;22(1):43–52.

Udartseva OO, Zhidkova OV, Ezdakova MI, et al. Low-dose photodynamic therapy promotes angiogenic potential and increases immunogenicity of human mesenchymal stromal cells. J Photochem Photobiol B. 2019;199: 111596. https://doi.org/10.1016/j.jphotobiol.2019.111596.

CAS  Article  PubMed  Google Scholar 

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717.

Article  PubMed  PubMed Central  Google Scholar 

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0.

CAS  Article  PubMed  Google Scholar 

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. https://doi.org/10.1021/jm020017n.

CAS  Article  PubMed  Google Scholar 

Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68. https://doi.org/10.1021/cc9800071.

Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841–6. https://doi.org/10.1021/jm015507e.

CAS  Article  PubMed  Google Scholar 

Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(21):3867–77. https://doi.org/10.1021/jm000292e.

CAS  Article  PubMed  Google Scholar 

Santamaria S, Nuti E, Cercignani G, et al. Kinetic characterization of 4,4’-biphenylsulfonamides as selective non-zinc binding MMP inhibitors. J Enzyme Inhib Med Chem. 2015;30(6):947–54. https://doi.org/10.3109/14756366.2014.1000889.

CAS  Article  PubMed  Google Scholar 

Kenakin TP. Pharmacology in Drug Discovery and Development: Understanding Drug Response. Amsterdam: Elsevier/Academic Press; 2017.

Google Scholar 

Aertgeerts K, Skene R, Yano J, et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J Biol Chem. 2011;286(21):18756–65. https://doi.org/10.1074/jbc.M110.206193.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yim-im W, Sawatdichaikul O, Semsri S, et al. Computational analyses of curcuminoid analogs against kinase domain of HER2. BMC Bioinformatics. 2014;15(1):261. https://doi.org/10.1186/1471-2105-15-261.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fields GB. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells. 2019;8(9):984. https://doi.org/10.3390/cells8090984.

CAS  Article  PubMed Central  Google Scholar 

Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta. 2010;1803(1):72–94. https://doi.org/10.1016/j.bbamcr.2009.08.006.

CAS  Article  PubMed  Google Scholar 

Nanjan P, Nambiar J, Nair BG, Banerji A. Synthesis and discovery of (I-3, II-3)-biacacetin as a novel non-zinc binding inhibitor of MMP-2 and MMP-9. Bioorg Med Chem. 2015;23(13):3781–7. https://doi.org/10.1016/j.bmc.2015.03.084.

CAS  Article  PubMed  Google Scholar 

Krzeski P, Buckland-Wright C, Bálint G, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther. 2007;9(5):R109. https://doi.org/10.1186/ar2315.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Peterson JT. Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Fail Rev. 2004;9(1):63–79. https://doi.org/10.1023/B:HREV.0000011395.11179.af.

CAS  Article  PubMed  Google Scholar 

Okamoto K, Ikemori-Kawada M, Jestel A, et al. Distinct binding mode of multi-kinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med Chem Lett. 2014;6(1):89–94. https://doi.org/10.1021/ml500394m.

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif