Ontogenetic rules for the molecular diversification of hypothalamic neurons

Kreier, F. & Swaab, D. F. in History of Neurology vol. 95, 335–360 (Elsevier, 2009).

Pickford, M. Neural control of the pituitary gland. By G.W. Harris, F.R.S., Sc.D., M.D., Fitzmary Professor of Physiology, Institute of Psychiatry, Maudsley Hospital. Edward Arnold (publishers) Ltd. 1955. pp. 298. 30s. Q. J. Exp. Physiol. Cogn. Med. Sci. 41, 355–356 (1956).

Google Scholar 

Woolley, D. W., Merrifield, R. B., Ressler, C. & Du Vigneaud, V. Strepogenin activity of synthetic peptides related to oxytocin. Proc. Soc. Exp. Biol. Med. 89, 669–673 (1955).

CAS  PubMed  Article  Google Scholar 

Acher, R., Chauvet, J & Olivry, G. Sur l’existence éventuelle d’une hormone unique neurohypophysaire I. Relations entre l’ocytocine, la vasopressine et la protéine de van dyke extraites de la neurohypophyse du boeuf. Biochim. Biophys. Acta 22, 421–427 (1956).

CAS  PubMed  Article  Google Scholar 

Klavdieva, M. M. The history of neuropeptides II. Front. Neuroendocrinol. 17, 126–153 (1996).

CAS  PubMed  Article  Google Scholar 

Guillemin, R. Peptides in the brain: the new endocrinology of the neuron. Science 202, 390–402 (1978).

CAS  PubMed  Article  Google Scholar 

Swaab, D. F., Pool, C. W. & Nijveldt, F. Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J. Neural Transm. 36, 195–215 (1975).

CAS  PubMed  Article  Google Scholar 

Swanson, L. W., Sawchenko, P. E. & Lind, R. W. Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response. Prog. Brain Res. 68, 169–190 (1986).

CAS  PubMed  Article  Google Scholar 

Hökfelt, T. et al. In Integrative Neuroendocrinology: Molecular, Cellular and Clinical Aspects: 1st International Congress of Neuroendocrinology, San Francisco, CA, July 1986 (eds McCann, S. M. & Weiner, R. I.) 1–34 (S. Karger AG, 1987).

Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

CAS  PubMed  Article  Google Scholar 

Horvath, T. L. & Diano, S. The floating blueprint of hypothalamic feeding circuits. Nat. Rev. Neurosci. 5, 662–667 (2004).

CAS  PubMed  Article  Google Scholar 

Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lechan, R. M. & Toni, R. in Endotext (eds Feingold, K. R. et al.) (MDText.com, 2000).

Schröder, H., Moser, N. & Huggenberger, S. in Neuroanatomy of the Mouse: An Introduction 205–230 (Springer, 2020).

Xie, Y. & Dorsky, R. I. Development of the hypothalamus: conservation, modification and innovation. Development 144, 1588–1599 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

CAS  PubMed  Article  Google Scholar 

Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017). This was one of the first studies to map neuronal identities at single-cell resolution in the adult hypothalamus.

CAS  PubMed  Article  Google Scholar 

Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mickelsen, L. E. et al. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat. Neurosci. 22, 642–656 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wen, S. et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat. Neurosci. 23, 456–467 (2020).

CAS  PubMed  Article  Google Scholar 

Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728.e17 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018). This study used single-cell spatial transcriptomics (MERFISH) to map specific cell types in the adult preoptic hypothalamus.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Mickelsen, L. E. et al. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. Elife 9, e58901 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377.e24 (2021).

CAS  PubMed  Article  Google Scholar 

Xu, S. et al. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370, eabb2494 (2020).

CAS  PubMed  Article  Google Scholar 

Maggi, R., Zasso, J. & Conti, L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front. Cell. Neurosci. 8, 440 (2014).

PubMed  Google Scholar 

Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rosin, J. M. & Kurrasch, D. M. in Glial-Neuronal Signaling in Neuroendocrine Systems (eds. Tasker, J. G., Bains, J. S. & Chowen, J. A.) 11, 3–28 (Springer International Publishing, 2021).

Thion, M. S., Ginhoux, F. & Garel, S. Microglia and early brain development: an intimate journey. Science 362, 185–189 (2018).

CAS  PubMed  Article  Google Scholar 

Puelles, L. in Encyclopedia of Neuroscience 315–319 (Elsevier, 2009).

Puelles, L. & Rubenstein, J. L. R. A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front. Neuroanat. 9, 27 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Puelles, L. Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front. Neuroanat. 13, 20 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Ferran, J. L., Puelles, L. & Rubenstein, J. L. R. Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front. Neuroanat. 9, 46 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010). This study generated the first ontogenetic map of area-specific gene selectors in the developing mouse hypothalamus.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Swanson, L. W. Brain Architecture: Understanding the Basic Plan (Oxford Univ. Press, 2011).

Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020). This study provided a high-resolution single-cell molecular atlas of the developing mouse hypothalamus.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020). This study defines key molecular rules that underlie the temporal and spatial establishment of the mouse hypothalamus.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kano, M., Suga, H. & Arima, H. Induction of functional hypothalamus and pituitary tissues from pluripotent stem cells for regenerative medicine. J. Endocr. Soc. 5, bvaa188 (2021).

PubMed  Article  CAS  Google Scholar 

Kim, D. W. et al. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep. 38, 110251 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee, B., Lee, S., Lee, S.-K. & Lee, J. W. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143, 3763–3773 (2016).

留言 (0)

沒有登入
gif