Biochemical and mechanical regulation of actin dynamics

Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D. & Robinson, R. C. The evolution of compositionally and functionally distinct actin filaments. J. Cell Sci. 128, 2009–2019 (2015).

CAS  PubMed  Article  Google Scholar 

Akıl, C. et al. Mythical origins of the actin cytoskeleton. Curr. Opin. Cell Biol. 68, 55–63 (2021).

PubMed  Article  CAS  Google Scholar 

Pollard, T. D. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8, a018226 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Oda, T., Iwasa, M., Aihara, T., Maéda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).

CAS  PubMed  Article  Google Scholar 

Merino, F. et al. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM. Nat. Struct. Mol. Biol. 25, 528–537 (2018).

CAS  PubMed  Article  Google Scholar 

Chou, S. Z. & Pollard, T. D. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. Proc. Natl Acad. Sci. USA 116, 4265–4274 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

CAS  PubMed  Article  Google Scholar 

Livne, A. & Geiger, B. The inner workings of stress fibers − from contractile machinery to focal adhesions and back. J. Cell Sci. 129, 1293–1304 (2016).

CAS  PubMed  Article  Google Scholar 

Anderson, C. A., Kovar, D. R., Gardel, M. L. & Winkelman, J. D. LIM domain proteins in cell mechanobiology. Cytoskeleton 78, 303–311 (2021).

CAS  PubMed  Article  Google Scholar 

Mogilner, A. & Oster, G. Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 13, R721–R733 (2003).

CAS  PubMed  Article  Google Scholar 

Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

CAS  PubMed  Article  Google Scholar 

Lacy, M. M., Baddeley, D. & Berro, J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. Elife 8, e52355 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sept, D. & McCammon, J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Funk, J. et al. Profilin and formin constitute a pacemaker system for robust actin filament growth. Elife 8, e50963 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xue, B. & Robinson, R. C. Guardians of the actin monomer. Eur. J. Cell Biol. 92, 316–332 (2013).

CAS  PubMed  Article  Google Scholar 

Koestler, S. A. et al. F- and G-actin concentrations in lamellipodia of moving cells. PLoS ONE 4, e4810 (2009).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Boujemaa-Paterski, R. et al. Network heterogeneity regulates steering in actin-based motility. Nat. Commun. 8, 655 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Malik-Garbi, M. et al. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys. 15, 509–516 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rodriguez, A. J., Shenoy, S. M., Singer, R. H. & Condeelis, J. Visualization of mRNA translation in living cells. J. Cell Biol. 175, 67–76 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Safer, D., Golla, R. & Nachmias, V. T. Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets. Proc. Natl Acad. Sci. USA 87, 2536–2540 (1990).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pollard, T. D. & Cooper, J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23, 6631–6641 (1984).

CAS  PubMed  Article  Google Scholar 

Gautreau, A. M., Fregoso, F. E., Simanov, G. & Dominguez, R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol. 32, 421–432 (2022).

CAS  PubMed  Article  Google Scholar 

Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bieling, P. et al. WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation. EMBO J. 37, 102–121 (2018). This article describes how polyproline sequences of WASP family proteins support filament elongation by bringing assembly-competent profilin–actin complexes to filament barbed ends, and also by transferring actin monomers to the nearby WH2 domains of the NPFs. Also, unoccupied WH2 domains potently tether actin network to membranes.

CAS  PubMed  Article  Google Scholar 

Padrick, S. B., Doolittle, L. K., Brautigam, C. A., King, D. S. & Rosen, M. K. Arp2/3 complex is bound and activated by two WASP proteins. Proc. Natl Acad. Sci. USA 108, E472–E479 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ti, S.-C., Jurgenson, C. T., Nolen, B. J. & Pollard, T. D. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc. Natl Acad. Sci. USA 108, E463–E471 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zimmet, A. et al. Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism. Sci. Adv. 6, eaaz7651 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shaaban, M., Chowdhury, S. & Nolen, B. J. Cryo-EM reveals the transition of Arp2/3 complex from inactive to nucleation-competent state. Nat. Struct. Mol. Biol. 27, 1009–1016 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

CAS  PubMed  Article  Google Scholar 

Smith, B. A. et al. Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. Elife 2, e01008 (2013).

PubMed  PubMed Central  Article  Google Scholar 

Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kovar, D. R. & Pollard, T. D. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc. Natl Acad. Sci. USA 101, 14725–14730 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

CAS  PubMed  Article  Google Scholar 

Courtemanche, N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys. Rev. 10, 1553–1569 (2018).

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif