Relationship of serum copper and zinc with kidney function and urinary albumin to creatinine ratio: Cross-sectional data from the NHANES 2011–2016

Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88:950–7.

Article  Google Scholar 

Stevens PE, Levin A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.

Article  Google Scholar 

Huan L, Yuezhong L, Chao W, HaiTao T. The urine albumin-to-creatinine ratio is a reliable indicator for evaluating complications of chronic kidney disease and progression in IgA nephropathy in China. Clinics. 2016;71:243–50.

Article  Google Scholar 

Liu S, Niu J, Wu S, Xin Z, Zhao Z, Xu M, et al. Urinary albumin-to-creatinine ratio levels are associated with subclinical atherosclerosis and predict CVD events and all-cause deaths: A prospective analysis. BMJ Open. 2021;11:e40890.

Google Scholar 

Chang DR, Yeh HC, Ting IW, Lin CY, Huang HC, Chiang HY, et al. The ratio and difference of urine protein-to-creatinine ratio and albumin-to-creatinine ratio facilitate risk prediction of all-cause mortality. Sci Rep. 2021;11:7851.

CAS  Article  Google Scholar 

Strain JJ. Newer aspects of micronutrients in chronic disease: Copper. Proc Nutr Soc. 1994;53:583–98.

CAS  Article  Google Scholar 

Linder MC, Hazegh-Azam. M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63:797S–811S.

CAS  PubMed  Google Scholar 

Chen A, Li G, Liu. Y. Association between copper levels and myocardial infarction: A meta-analysis. Inhal Toxicol. 2015;27:237–46.

CAS  Article  Google Scholar 

Ebara M, Fukuda H, Hatano R, Saisho H, Nagato Y, Suzuki K, et al. Relationship between copper, zinc, and metallothionein in hepatocellular carcinoma and its surrounding liver parenchyma. J Hepatol. 2000;33:415–22.

CAS  Article  Google Scholar 

Grammer TB, Kleber ME, Silbernagel G, Pilz S, Scharnagl H, Lerchbaum E, et al. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res. 2014;48:706–15.

CAS  Article  Google Scholar 

King JC. Zinc: An essential but elusive nutrient. Am J Clin Nutr. 2011;94:679S–84S.

Article  Google Scholar 

Prasad AS. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. J Trace Elem Med Biol. 2014;28:364–71.

CAS  Article  Google Scholar 

Roney N, Osier M, Paikoff SJ, Smith CV, Williams M, De Rosa. CT. ATSDR evaluation of the health effects of zinc and relevance to public health. Toxicol Ind Health. 2006;22:423–93.

CAS  Article  Google Scholar 

Tsuboi A, Terazawa WM, Kazumi T, Fukuo K. Serum copper, zinc and risk factors for cardiovascular disease in community-living Japanese elderly women. Asia Pac J Clin Nutr. 2014;23:239–45.

CAS  PubMed  Google Scholar 

Freitas EP, Cunha AT, Aquino SL, Pedrosa LF, Lima SC, Lima JG, et al. Zinc status biomarkers and cardiometabolic risk factors in metabolic syndrome: A case-control study. Nutrients. 2017;9:175.

Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/index.htm.

Kobayashi K, Katsuya Y, Abdulah R, Koyama. H. Rapid and direct determination of selenium, copper, and zinc in blood plasma by flow injection-inductively coupled plasma-mass spectrometry. Biol Trace Elem Res. 2007;115:87–93.

CAS  Article  Google Scholar 

National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies. Copper, Selenium & Zinc - Serum (CUSEZN_G). https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CUSEZN_G.htm.

National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies. Copper, Selenium & Zinc - Serum (CUSEZN_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CUSEZN_H.htm.

National Health and Nutrition Examination Survey. NHANES 2011-2012 Laboratory Methods. https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/labmethods/CUSEZN_G_met_serum_elements.pdf.

National Health and Nutrition Examination Survey. 2017_MEC_Laboratory_Procedures_Manual. https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/manuals/2016_MEC_Laboratory_Procedures_Manual.pdf.

National Health and Nutrition Examination Survey 2015-2016 Data Documentation, Codebook, and Frequencies. Copper, Selenium & Zinc - Serum (CUSEZN_I). https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/CUSEZN_I.htm.

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AR, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

Article  Google Scholar 

Shen Y, Yin Z, Lv Y, Luo J, Shi W, Fang J, et al. Plasma element levels and risk of chronic kidney disease in elderly populations (≥90 Years old). Chemosphere 2020;254:126809.

CAS  Article  Google Scholar 

Makhlough A, Makhlough M, Shokrzadeh M, Mohammadian M, Sedighi O, Faghihan M. Comparing the levels of trace elements in patients with diabetic nephropathy and healthy individuals. Nephrourol Mon. 2015;7:e28576.

Article  Google Scholar 

Liu X, Zhao Y, Feng. Y. Estimation of 24-h urine protein excretion using urine albumin-to-creatinine ratio from an in-hospital population. Med Sci Monit. 2022;28:e934307.

CAS  PubMed  PubMed Central  Google Scholar 

Yang F, Yi X, Guo J, Xu S, Xiao Y, Huang X, et al. Association of plasma and urine metals levels with kidney function: A population-based cross-sectional study in China. Chemosphere 2019;226:321–8.

CAS  Article  Google Scholar 

Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23:319–26.

CAS  Article  Google Scholar 

de Romana DL, Olivares M, Uauy R, Araya. M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011;25:3–13.

Article  Google Scholar 

Gaetke LM, Chow-Johnson HS, Chow. CK. Copper: Toxicological relevance and mechanisms. Arch Toxicol. 2014;88:1929–38.

CAS  Article  Google Scholar 

Gaetke LM, Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003;189:147–63.

CAS  Article  Google Scholar 

Pereira TC, Campos MM, Bogo. MR. Copper toxicology, oxidative stress, and inflammation using zebrafish as experimental model. J Appl Toxicol. 2016;36:876–85.

CAS  Article  Google Scholar 

Uriu-Adams JY, Keen. CL. Copper, oxidative stress, and human health. Mol Asp Med. 2005;26:268–98.

CAS  Article  Google Scholar 

Baltaci AK, Yuce K, Mogulkoc. R. Zinc metabolism and metallothioneins. Biol Trace Elem Res. 2018;183:22–31.

CAS  Article  Google Scholar 

Hambidge M, Krebs. NF. Zinc metabolism and requirements. Food Nutr Bull. 2001;22:126–32.

Article  Google Scholar 

Wastney ME, House WA, Barnes RM, Subramanian KN. Kinetics of zinc metabolism: Variation with diet, genetics and disease. J Nutr. 2000;130(5S Suppl):1355S–9S.

CAS  Article  Google Scholar 

Mocchegiani E, Giacconi R, Muzzioli M, Cipriano. C. Zinc, infections and immunosenescence. Mech Ageing Dev. 2000;121:21–35.

CAS  Article  Google Scholar 

Mocchegiani E, Muzzioli M, Giacconi. R. Zinc and immunoresistance to infection in aging: New biological tools. Trends Pharm Sci. 2000;21:205–08.

CAS  Article  Google Scholar 

Maruyama Y, Nakashima A, Fukui A, Yokoo. T. Zinc deficiency: Its prevalence and relationship to renal function in Japan. Clin Exp Nephrol 2021;25:771–8.

CAS  Article  Google Scholar 

Ye M, Li G, Yan P, Ren J, Zheng L, Han D, et al. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere 2017;185:1189–96.

CAS  Article  Google Scholar 

Lezaic V, Ristic S, Dopsaj V, Marinkovic. J. Is morning urinary protein-to-creatinine ratio a reliable estimator of 24-hour proteinuria in patients with kidney diseases? SRP Arh Celok Lek. 2010;138:726–31.

Article  Google Scholar 

留言 (0)

沒有登入
gif