The multifaceted mechanisms of malignant glioblastoma progression and clinical implications

Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Group, N. C. I. o. C. C. T. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330

Article  Google Scholar 

Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., Group, N. C. I. o. C. C. T. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The lancet Oncology, 10(5), 459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

CAS  Article  Google Scholar 

Li, X., Shao, C., Shi, Y., & Han, W. (2018). Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. Journal of Hematology & Oncology, 11(1), 31. https://doi.org/10.1186/s13045-018-0578-4

CAS  Article  Google Scholar 

Sanmamed, M. F., & Chen, L. (2018). A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell, 175(2), 313–326. https://doi.org/10.1016/j.cell.2018.09.035

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sondak, V. K., Smalley, K. S., Kudchadkar, R., Grippon, S., & Kirkpatrick, P. (2011). Ipilimumab. Nature Reviews. Drug Discovery, 10(6), 411–412. https://doi.org/10.1038/nrd3463

CAS  Article  PubMed  Google Scholar 

Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L., & Ribas, A. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568571. https://doi.org/10.1038/nature13954

CAS  Article  Google Scholar 

Akintola, O. O., & Reardon, D. A. (2021). The current landscape of immune checkpoint blockade in glioblastoma. Neurosurgery Clinics of North America, 32(2), 235–248. https://doi.org/10.1016/j.nec.2020.12.003

Article  PubMed  Google Scholar 

Yang, T., Kong, Z., & Ma, W. (2021). PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: Clinical studies, challenges and potential. Human Vaccines & Immunotherapeutics, 17(2), 546–553. https://doi.org/10.1080/21645515.2020.1782692

CAS  Article  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

CAS  Article  PubMed  Google Scholar 

de Gooijer, M. C., Guillén Navarro, M., Bernards, R., Wurdinger, T., & van Tellingen, O. (2018). An experimenter’s guide to glioblastoma invasion pathways. Trends in Molecular Medicine, 24(9), 763–780. https://doi.org/10.1016/j.molmed.2018.07.003

CAS  Article  PubMed  Google Scholar 

Wen, P. Y., & Kesari, S. (2008). Malignant gliomas in adults. Erratum IN: N Engl J Med., 359(5), 492–507. https://doi.org/10.1056/NEJMra0708126

CAS  Article  Google Scholar 

Cuddapah, V. A., Robel, S., Watkins, S., & Sontheimer, H. (2014). A neurocentric perspective on glioma invasion. Nature Reviews Neuroscience, 15(7), 455–465. https://doi.org/10.1038/nrn3765

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gritsenko, P. G., Ilina, O., & Friedl, P. (2012). Interstitial guidance of cancer invasion. The Journal of Pathology, 226(2), 185–199. https://doi.org/10.1002/path.3031

CAS  Article  PubMed  Google Scholar 

Novak, U., & Kaye, A. H. (2000). Extracellular matrix and the brain: Components and function. Journal of Clinical Neuroscience, 7(4), 280–290. https://doi.org/10.1054/jocn.1999.0212

CAS  Article  PubMed  Google Scholar 

Thomsen, M. S., Routhe, L. J., & Moos, T. (2017). The vascular basement membrane in the healthy and pathological brain. Journal of Cerebral Blood Flow and Metabolism, 37(10), 3300–3317. https://doi.org/10.1177/0271678X17722436

Article  PubMed  PubMed Central  Google Scholar 

Persidsky, Y., Ramirez, S. H., Haorah, J., & Kanmogne, G. D. (2006). Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. Journal of Neuroimmune Pharmacology, 1(3), 223–236. https://doi.org/10.1007/s11481-006-9025-3

Article  PubMed  Google Scholar 

Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422–433. https://doi.org/10.1038/nrc1094

CAS  Article  PubMed  Google Scholar 

Barnes, J. M., Kaushik, S., Bainer, R. O., Sa, J. K., Woods, E. C., Kai, F., & Weaver, V. M. (2018). A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 20(10), 1203–1214. https://doi.org/10.1038/s41556-018-0183-3

CAS  Article  PubMed  PubMed Central  Google Scholar 

Paszek, M. J., DuFort, C. C., Rossier, O., Bainer, R., Mouw, J. K., Godula, K., & Weaver, V. M. (2014). The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature, 511(7509), 319–325. https://doi.org/10.1038/nature13535

CAS  Article  PubMed  PubMed Central  Google Scholar 

Miroshnikova, Y. A., Mouw, J. K., Barnes, J. M., Pickup, M. W., Lakins, J. N., Kim, Y., & Weaver, V. M. (2016). Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nature Cell Biology, 18(12), 1336–1345. https://doi.org/10.1038/ncb3429

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tran, V. M., Wade, A., McKinney, A., Chen, K., Lindberg, O. R., Engler, J. R., & Phillips, J. J. (2017). Heparan sulfate glycosaminoglycans in glioblastoma promote tumor invasion. Molecular Cancer Research, 15(11), 1623–1633. https://doi.org/10.1158/1541-7786.MCR-17-0352

CAS  Article  PubMed  Google Scholar 

Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., & Karumbaiah, L. (2019). Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. The FASEB Journal, 33(11), 11973–11992. https://doi.org/10.1096/fj.201802610RR

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ferrer, V. P., Moura Neto, V., & Mentlein, R. (2018). Glioma infiltration and extracellular matrix: Key players and modulators. Glia, 66(8), 1542–1565. https://doi.org/10.1002/glia.23309

Article  PubMed  Google Scholar 

Wade, A., Robinson, A. E., Engler, J. R., Petritsch, C., James, C. D., & Phillips, J. J. (2013). Proteoglycans and their roles in brain cancer. FEBS Journal, 280(10), 2399–2417. https://doi.org/10.1111/febs.12109

CAS  Article  PubMed  Google Scholar 

Miyata, S., & Kitagawa, H. (2016). Chondroitin 6-sulfation regulates perineuronal net formation by controlling the stability of aggrecan. Neural Plasticity, 2016, 1305801. https://doi.org/10.1155/2016/1305801

CAS  Article  PubMed  PubMed Central  Google Scholar 

Belousov, A., Titov, S., Shved, N., Garbuz, M., Malykin, G., Gulaia, V., & Kumeiko, V. (2019). The extracellular matrix and biocompatible materials in glioblastoma treatment. Front Bioeng Biotechnol, 7, 341. https://doi.org/10.3389/fbioe.2019.00341

Article  PubMed  PubMed Central  Google Scholar 

Lu, R., Wu, C., Guo, L., Liu, Y., Mo, W., Wang, H., & Yu, M. (2012). The role of brevican in glioma: Promoting tumor cell motility in vitro and in vivo. BMC Cancer, 12, 607. https://doi.org/10.1186/1471-2407-12-607

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dwyer, C. A., Bi, W. L., Viapiano, M. S., & Matthews, R. T. (2014). Brevican knockdown reduces late-stage glioma tumor aggressiveness. Journal of Neuro-oncology, 120(1), 63–72. https://doi.org/10.1007/s11060-014-1541-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

Onken, J., Moeckel, S., Leukel, P., Leidgens, V., Baumann, F., Bogdahn, U., & Hau, P. (2014). Versican isoform V1 regulates proliferation and migration in high-grade gliomas. Journal of Neuro-oncology, 120(1), 73–83. https://doi.org/10.1007/s11060-014-1545-8

CAS  Article  PubMed  Google Scholar 

Hu, F., Dzaye, O., Hahn, A., Yu, Y., Scavetta, R. J., Dittmar, G., & Kettenmann, H. (2015). Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-Oncology, 17(2), 200–210. https://doi.org/10.1093/neuonc/nou324

CAS  Article  PubMed  Google Scholar 

Chen, J. E., Pedron, S., Shyu, P., Hu, Y., Sarkaria, J. N., & Harley, B. A. C. (2018). Influence of hyaluronic acid transitions in tumor microenvironment on glioblastoma malignancy and invasive behavior. Front Mater, 5 https://doi.org/10.3389/fmats.2018.00039

Yoo, K. C., Suh, Y., An, Y., Lee, H. J., Jeong, Y. J., Uddin, N., & Lee, S. J. (2018). Proinvasive extracellular matrix remodeling in tumor microenvironment in response to radiation. Oncogene, 37(24), 3317–3328. https://doi.org/10.1038/s41388-018-0199-y

CAS  Article  PubMed  Google Scholar 

Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374. https://doi.org/10.1038/nrc1075

CAS  Article  PubMed  Google Scholar 

Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., & Marshall, C. J. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell, 135(3), 510–523. https://doi.org/10.1016/j.cell.2008.09.043

CAS  Article  PubMed  Google Scholar 

Beadle, C., Assanah, M. C., Monzo, P., Vallee, R., Rosenfeld, S. S., & Canoll, P. (2008). The role of myosin II in glioma invasion of the brain. Molecular Biology of the Cell, 19(8), 3357–3368. https://doi.org/10.1091/mbc.e08-03-0319

CAS  Article  PubMed  PubMed Central  Google Scholar 

Caspani, E. M., Echevarria, D., Rottner, K., & Small, J. V. (2006). Live imaging of glioblastoma cells in brain tissue shows requirement of actin bundles for migration. Neuron Glia Biology, 2(2), 105–114. https://doi.org/10.1017/S1740925X06000111

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif