Long-term watermelon continuous cropping leads to drastic shifts in soil bacterial and fungal community composition across gravel mulch fields

Xie Z, Wang Y, Cheng G, Malhi SS, Vera CL, Guo Z, Zhang Y. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of northwest China. Agricult Water Manag. 2010;97(6):917–23.

Article  Google Scholar 

Ma Y-J, Li X-Y. Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers. J Arid Environ. 2011;75(5):432–7.

Article  Google Scholar 

Qiu Y, Xie Z, Wang Y, Malhi SS, Ren J. Long-term effects of gravel—sand mulch on soil organic carbon and nitrogen in the Loess Plateau of northwestern China. J Arid Land. 2015;7(1):46–53.

Article  Google Scholar 

Liu F-Y, Zhu Q, Yang H-R, Zhou J, Dai C-C, Wang X-X. An integrated prevention strategy to address problems associated with continuous cropping of watermelon caused by Fusarium oxysporum. Eur J Plant Pathol. 2019;155(1):293–305.

CAS  Article  Google Scholar 

Wang T, Hao Y, Zhu M, Yu S, Ran W, Xue C, Ling N, Shen Q. Characterizing differences in microbial community composition and function between Fusarium wilt diseased and healthy soils under watermelon cultivation. Plant Soil. 2019;438(1):421–33.

CAS  Article  Google Scholar 

Xu W, Liu D, Wu F, Liu S. Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. Eur J Plant Pathol. 2015;141(1):209–16.

Article  Google Scholar 

Zhao M, Li M, Wang M, Wang Y, Zhang X. The effect of continuous cropping obstacle of watermelon on soil microorganism and soil enzyme activity. Microbiology. 2008;35:1251–4.

Google Scholar 

Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nat Commun. 2014;5(1):1–7.

Article  CAS  Google Scholar 

Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M. Consequences of biodiversity loss for litter decomposition across biomes. Nature. 2014;509(7499):218–21.

CAS  PubMed  Article  Google Scholar 

Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A. Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biol Biochem. 2013;60:95–104.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Avidano L, Gamalero E, Cossa GP, Carraro E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol. 2005;30(1):21–33.

Article  Google Scholar 

Liu Z, Liu J, Yu Z, Yao Q, Li Y, Liang A, Zhang W, Mi G, Jin J, Liu X. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. 2020;197:104503.

Article  Google Scholar 

Chen S, Qi G, Luo T, Zhang H, Jiang Q, Wang R, Zhao X. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land Degradation Develop. 2018;29(11):4106–20.

Article  Google Scholar 

Chen T, Li J, Wu L, Lin S, Wang J, Li Z, Zhang Z, Lin W. Effects of continuous monoculture of Achyranthes bidentata on microbial community structure and functional diversity in soil. Allelopathy J. 2015;36(2):197-211.

Venter ZS, Jacobs K, Hawkins H-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia. 2016;59(4):215–223.

Yao Y, Yao X, An L, Bai Y, Xie D, Wu K. Rhizosphere Bacterial Community Response to Continuous Cropping of Tibetan Barley. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.551444.

Yang L, Tan L, Zhang F, Gale WJ, Cheng Z, Sang W. Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields. Can J Microbiol. 2018;64(3):167–81.

CAS  PubMed  Article  Google Scholar 

Bailey RI, Molleman F, Vasseur C, Woas S, Prinzing A. Large body size constrains dispersal assembly of communities even across short distances. Sci Rep. 2018;8(1):1–12.

Google Scholar 

Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, Gaucher P, Gielly L, Giguet-Covex C, Iribar A. Body size determines soil community assembly in a tropical forest. Mol Ecol. 2019;28(3):528–43.

CAS  PubMed  Article  Google Scholar 

Xun W, Li W, Xiong W, Ren Y, Liu Y, Miao Y, Xu Z, Zhang N, Shen Q, Zhang R. Diversity-triggered deterministic bacterial assembly constrains community functions. Nat Commun. 2019;10(1):1–10.

CAS  Article  Google Scholar 

Rousk J, Demoling LA, Bahr A, Bååth E. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol. 2008;63(3):350–8.

CAS  PubMed  Article  Google Scholar 

Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology. 2006;87(10):2559–69.

PubMed  Article  Google Scholar 

Boer Wd, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29(4):795–811.

PubMed  Article  CAS  Google Scholar 

Wang J, Zhang T, Li L, Li J, Feng Y, Lu Q. The patterns and drivers of bacterial and fungal β-diversity in a typical dryland ecosystem of northwest China. Front Microbiol. 2017;8:2126.

PubMed  PubMed Central  Article  Google Scholar 

Zinger L, Lejon DP, Baptist F, Bouasria A, Aubert S, Geremia RA, Choler P. Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS One. 2011;6(5):e19950.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ma B, Dai Z, Wang H, Dsouza M, Liu X, He Y, Wu J, Rodrigues JL, Gilbert JA, Brookes PC. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China. Msystems. 2017;2(1):e00174-00116.

Article  Google Scholar 

Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, Liu X, Wang G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol Biochem. 2014;70:113–22.

CAS  Article  Google Scholar 

Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, Liu X, Wang G. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol Biochem. 2015;83:29–39.

CAS  Article  Google Scholar 

Ali A, Imran Ghani M, Li Y, Ding H, Meng H, Cheng Z. Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of northern China. Int J Mol Sci. 2019;20(11):2619.

CAS  PubMed Central  Article  Google Scholar 

Chen M, Li X, Yang Q, Chi X, Pan L, Chen N, Yang Z, Wang T, Wang M, Yu S. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected. Plos one. 2012;7(7):e40659.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wei Z, Yu D. Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing. Arch Microbiol. 2018;200(4):653–62.

CAS  PubMed  Article  Google Scholar 

Walkley A. A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947;63(4):251–64.

CAS  Article  Google Scholar 

Michałowski T, Asuero AG, Wybraniec S. The titration in the kjeldahl method of nitrogen determination: base or acid as titrant? J Chem Educ. 2013;90(2):191–7.

Article  CAS  Google Scholar 

Mulvaney R, Khan S. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Sci Soc Am J. 2001;65(4):1284–92.

CAS  Article  Google Scholar 

Rodriguez J, Self J, Soltanpour P. Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method. Soil Sci Soc Am J. 1994;58(3):866–70.

CAS  Article  Google Scholar 

Dahlquist R, Knoll J. Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major, trace, and ultra-trace elements. Appl Spectroscopy. 1978;32(1):1–30.

CAS  Article  Google Scholar 

Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate: US Department of Agriculture; 1954.

Zhang K, Shi Y, Cui X, Yue P, Li K, Liu X, Tripathi BM, Chu H. Salinity is a key determinant for soil microbial communities in a desert ecosystem. Msystems. 2019;4(1):e00225-00218.

Munyaka PM, Eissa N, Bernstein CN, Khafipour E, Ghia J-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PloS one. 2015;10(11):e0142536.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113–8.

CAS  PubMed  Article  Google Scholar 

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020;14(1):202–16.

PubMed  Article  Google Scholar 

Hooper D, Coughlan J, Mullen MR. Structural equation modelling: Guidelines for determining model fit. Electron J Bus Res Methods. 2008;6(1):53-60.

Liu X, Li Y, Han B, Zhang Q, Zhou K, Zhang X, Hashemi M. Yield response of continuous soybean to one-season crop disturbance in a previous continuous soybean field in Northeast China. Field Crops Res. 2012;138:52–6.

Article  Google Scholar 

Zhong S, Mo Y, Guo G, Zeng H, Jin Z. Effect of continuous cropping on soil chemical properties and crop yield in banana plantation. J Agricult Sci Technol. 2014;16(1):239–50.

CAS 

留言 (0)

沒有登入
gif