Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway

Bhansali, R.S., M. Rammohan, P. Lee, A.P. Laurent, Q. Wen, P. Suraneni, B.H. Yip, Y.C. Tsai, S. Jenni, B. Bornhauser, et al. 2021. DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. The Journal of Clinical Investigation 131: e135937. https://doi.org/10.1172/jci135937.

CAS  Article  PubMed Central  Google Scholar 

Dierssen, M., and M.M. de Lagrán. 2006. DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A): A gene with dosage effect during development and neurogenesis. The Scientific World Journal 6: 1911–1922. https://doi.org/10.1100/tsw.2006.319.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Guedj, F., P.L. Pereira, S. Najas, M.J. Barallobre, C. Chabert, B. Souchet, C. Sebrie, C. Verney, Y. Herault, M. Arbones, and J.M. Delabar. 2012. DYRK1A: A master regulatory protein controlling brain growth. Neurobiology of Diseases 46: 190–203. https://doi.org/10.1016/j.nbd.2012.01.007.

CAS  Article  Google Scholar 

Velazquez, R., B. Meechoovet, A. Ow, C. Foley, A. Shaw, B. Smith, S. Oddo, C. Hulme, and T. Dunckley. 2019. Chronic Dyrk1 inhibition delays the onset of AD-like pathology in 3xTg-AD mice. Molecular Neurobiology 56: 8364–8375. https://doi.org/10.1007/s12035-019-01684-9.

CAS  Article  PubMed  Google Scholar 

Shi, J., T. Zhang, C. Zhou, M.O. Chohan, X. Gu, J. Wegiel, J. Zhou, Y.W. Hwang, K. Iqbal, I. Grundke-Iqbal, et al. 2008. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. Journal of Biological Chemistry 283: 28660–28669. https://doi.org/10.1074/jbc.M802645200.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ryoo, S.R., H.J. Cho, H.W. Lee, H.K. Jeong, C. Radnaabazar, Y.S. Kim, M.J. Kim, M.Y. Son, H. Seo, S.H. Chung, and W.J. Song. 2008. Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: Evidence for a functional link between Down syndrome and Alzheimer’s disease. Journal of Neurochemistry 104: 1333–1344. https://doi.org/10.1111/j.1471-4159.2007.05075.x.

CAS  Article  PubMed  Google Scholar 

Ryu, Y.S., S.Y. Park, M.S. Jung, S.H. Yoon, M.Y. Kwen, S.Y. Lee, S.H. Choi, C. Radnaabazar, M.K. Kim, H. Kim, et al. 2010. Dyrk1A-mediated phosphorylation of presenilin 1: A functional link between Down syndrome and Alzheimer’s disease. Journal of Neurochemistry 115: 574–584. https://doi.org/10.1111/j.1471-4159.2010.06769.x.

CAS  Article  PubMed  Google Scholar 

Gwack, Y., S. Sharma, J. Nardone, B. Tanasa, A. Iuga, S. Srikanth, H. Okamura, D. Bolton, S. Feske, P.G. Hogan, and A. Rao. 2006. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441: 646–650. https://doi.org/10.1038/nature04631.

CAS  Article  PubMed  Google Scholar 

Yang, E.J., Y.S. Ahn, and K.C. Chung. 2001. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. Journal of Biological Chemistry 276: 39819–39824. https://doi.org/10.1074/jbc.M104091200.

CAS  Article  PubMed  Google Scholar 

Kurabayashi, N., M.D. Nguyen, and K. Sanada. 2015. DYRK1A overexpression enhances STAT activity and astrogliogenesis in a Down syndrome mouse model. EMBO Reports 16: 1548–1562. https://doi.org/10.15252/embr.201540374.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Park, J., Y. Oh, L. Yoo, M.S. Jung, W.J. Song, S.H. Lee, H. Seo, and K.C. Chung. 2010. Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. Journal of Biological Chemistry 285: 31895–31906. https://doi.org/10.1074/jbc.M110.147520.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Martinez, J., E.M. Vela, M. Tora-Ponsioen, O.H. Ocaña, M.A. Nieto, and J. Galceran. 2009. Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. Journal of Cell Science 122: 1574–1583. https://doi.org/10.1242/jcs.044354.

CAS  Article  PubMed  Google Scholar 

Aranda, S., M. Alvarez, S. Turró, A. Laguna, and S. de la Luna. 2008. Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Molecular and Cellular Biology 28: 5899–5911. https://doi.org/10.1128/mcb.00394-08.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu, F., J. Wu, Y. Gong, P. Wang, L. Zhu, L. Tong, X. Chen, Y. Ling, and C. Huang. 2017. Harmine produces antidepressant-like effects via restoration of astrocytic functions. Progress in Neuro-Psychopharmacology and Biological Psychiatry 79: 258–267. https://doi.org/10.1016/j.pnpbp.2017.06.012.

CAS  Article  PubMed  Google Scholar 

Ahmad, M., S. Saleem, H. Zhuang, A.S. Ahmad, V. Echeverria, A. Sapirstein, and S. Doré. 2006. 1-hydroxyPGE reduces infarction volume in mouse transient cerebral ischemia. European Journal of Neuroscience 23: 35–42. https://doi.org/10.1111/j.1460-9568.2005.04540.x.

Article  PubMed  Google Scholar 

Liu, H., Z. Zhang, C. Zang, L. Wang, H. Yang, C. Sheng, J. Shang, Z. Zhao, F. Yuan, Y. Yu, et al. 2021. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. Journal of Ethnopharmacology 267: 113491. https://doi.org/10.1016/j.jep.2020.113491.

CAS  Article  PubMed  Google Scholar 

Mao, J., P. Maye, P. Kogerman, F.J. Tejedor, R. Toftgard, W. Xie, G. Wu, and D. Wu. 2002. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. Journal of Biological Chemistry 277: 35156–35161. https://doi.org/10.1074/jbc.M206743200.

CAS  Article  PubMed  Google Scholar 

Adayev, T., J. Wegiel, and Y.W. Hwang. 2011. Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Archives of Biochemistry and Biophysics 507: 212–218. https://doi.org/10.1016/j.abb.2010.12.024.

CAS  Article  PubMed  Google Scholar 

Jiang, B., L. Meng, N. Zou, H. Wang, S. Li, L. Huang, X. Cheng, Z. Wang, W. Chen, and C. Wang. 2019. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine 62: 152967. https://doi.org/10.1016/j.phymed.2019.152967.

CAS  Article  PubMed  Google Scholar 

Pan, J.S., M.Z. Hong, and J.L. Ren. 2009. Reactive oxygen species: A double-edged sword in oncogenesis. World Journal of Gastroenterology 15: 1702–1707. https://doi.org/10.3748/wjg.15.1702.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cunningham, C., D.C. Wilcockson, S. Campion, K. Lunnon, and V.H. Perry. 2005. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. Journal of Neuroscience 25: 9275–9284. https://doi.org/10.1523/jneurosci.2614-05.2005.

CAS  Article  PubMed  Google Scholar 

Oboudiyat, C., H. Glazer, A. Seifan, C. Greer, and R.S. Isaacson. 2013. Alzheimer’s disease. Seminars in Neurology 33: 313–329. https://doi.org/10.1055/s-0033-1359319.

Article  PubMed  Google Scholar 

Lull, M.E., and M.L. Block. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7: 354–365. https://doi.org/10.1016/j.nurt.2010.05.014.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, X. Jin, K. Kondo, K. Fujita, H. Homma, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565. https://doi.org/10.1038/s41467-021-26851-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jian, M., J.S. Kwan, M. Bunting, R.C. Ng, and K.H. Chan. 2019. Adiponectin suppresses amyloid-β oligomer (AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway. Journal of Neuroinflammation 16: 110. https://doi.org/10.1186/s12974-019-1492-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Calsolaro, V., and P. Edison. 2016. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s & Dementia 12: 719–732. https://doi.org/10.1016/j.jalz.2016.02.010.

Article  Google Scholar 

Wiseman, F.K., T. Al-Janabi, J. Hardy, A. Karmiloff-Smith, D. Nizetic, V.L. Tybulewicz, E.M. Fisher, and A. Strydom. 2015. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nature Reviews Neuroscience 16: 564–574. https://doi.org/10.1038/nrn3983.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dang, T., W.Y. Duan, B. Yu, D.L. Tong, C. Cheng, Y.F. Zhang, W. Wu, K. Ye, W.X. Zhang, M. Wu, et al. 2018. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Molecular Psychiatry 23: 747–758. https://doi.org/10.1038/mp.2016.253.

CAS  Article  PubMed  Google Scholar 

Sarkar, S., H.M. Nguyen, E. Malovic, J. Luo, M. Langley, B.N. Palanisamy, N. Singh, S. Manne, M. Neal, M. Gabrielle, et al. 2020. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. The Journal of Clinical Investigation 130: 4195–4212. https://doi.org/10.1172/jci136174.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Walte, A., K. Rüben, R. Birner-Gruenberger, C. Preisinger, S. Bamberg-Lemper, N. Hilz, F. Bracher, and W. Becker. 2013. Mechanism of dual specificity kinase activity of DYRK1A. FEBS Journal 280: 4495–4511. https://doi.org/10.1111/febs.12411.

CAS  Article  PubMed  Google Scholar 

Arbones, M.L., A. Thomazeau, A. Nakano-Kobayashi, M. Hagiwara, and J.M. Delabar. 2019. DYRK1A and cognition: A lifelong relationship. Pharmacology & Therapeutics 194: 199–221. https://doi.org/10.1016/j.pharmthera.2018.09.010.

CAS  Article  Google Scholar 

Zheng, M., K. Li, T. Chen, S. Liu, and L. He. 2021. Geniposide protects depression through BTK/JAK2/STAT1 signaling pathway in lipopolysaccharide-induced depressive mice. Brain Research Bulletin 170: 65–73. https://doi.org/10.1016/j.brainresbull.2021.02.008.

CAS  Article  PubMed  Google Scholar 

Li, J., Y. Zhou, G. Du, X. Qin, and L. Gao. 2019. Integration of transcriptomics and network analysis deciphers the mechanisms of baicalein in improving learning and memory impairment in senescence-accelerated mouse prone 8 (SAMP8). European Journal of Pharmacology 865: 172789. https://doi.org/10.1016/j.ejphar.2019.172789.

CAS 

留言 (0)

沒有登入
gif