The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule

Brooks GA. Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals—the ‘lactate shuttle.’ In: Gilles R, editor. Circulation, Respiration, and Metabolism: Current Comparative Approaches. Berlin: Springer-Verlag Press; 1985. p. 208–18.

Chapter  Google Scholar 

Brooks GA. Mammalian fuel utilization during sustained exercise. Comp Biochem Physiol. 1998;120:89–107. https://doi.org/10.1016/S0305-0491(98)00025-X.

Article  CAS  Google Scholar 

Todd JJ. Lactate: valuable for physical performance and maintenance of brain function during exercise. Biosci Horizons. 2014;7:hzu001–hzu001. https://doi.org/10.1093/biohorizons/hzu001.

Article  CAS  Google Scholar 

Harris RA, Lone A, Lim H, Martinez F, Frame AK, Scholl TJ, et al. Aerobic glycolysis is required for spatial memory acquisition but not memory retrieval in mice. eNeuro. 2018. https://doi.org/10.1523/ENEURO.0389-18.2019.

Article  Google Scholar 

Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38. https://doi.org/10.1016/j.cmet.2011.08.016.

Article  PubMed  CAS  Google Scholar 

Porras OH, Loaiza A, Barros LF. Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci. 2004;24:9669–73. https://doi.org/10.1523/JNEUROSCI.1882-04.2004.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barros LF, Courjaret R, Jakoby P, Loaiza A, Lohr C, Deitmer JW. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia. 2009;57:962–70. https://doi.org/10.1002/glia.20820.

Article  PubMed  CAS  Google Scholar 

Riske L, Thomas RK, Baker GB, Dursun SM. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder. Ther Adv Psychopharmacol. 2017;7:85–9. https://doi.org/10.1177/2045125316675579.

Article  PubMed  CAS  Google Scholar 

van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010;199:499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x.

Article  CAS  Google Scholar 

Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24:1687–94. https://doi.org/10.1111/j.1460-9568.2006.05056.x.

Article  PubMed  Google Scholar 

Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94:1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x.

Article  PubMed  CAS  Google Scholar 

Delgado MG, Oliva C, López E, Ibacache A, Galaz A, Delgado R, et al. Chaski, a novel Drosophila lactate/pyruvate transporter required in glia cells for survival under nutritional stress. Rep. 2018;8:1186. https://doi.org/10.1038/s41598-018-19595-5.

Article  CAS  Google Scholar 

Henneberger C, Petzold GC. Diversity of synaptic astrocyte–neuron signaling. e-Neuroforum. 2015;6:79–83. https://doi.org/10.1007/s13295-015-0011-1.

Article  Google Scholar 

Finsterwald C, Magistretti PJ, Lengacher S. Astrocytes: new targets for the treatment of neurodegenerative diseases. Curr Pharm Des. 2015;21:3570–81. https://doi.org/10.2174/1381612821666150710144502.

Article  PubMed  CAS  Google Scholar 

Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86:883–901. https://doi.org/10.1016/j.neuron.2015.03.035.

Article  PubMed  CAS  Google Scholar 

Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91:10625–9. https://doi.org/10.1073/pnas.91.22.10625.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Magistretti PJ. Neuron-glia metabolic coupling and plasticity. Exp Physiol. 2011;96:407–10. https://doi.org/10.1113/expphysiol.2010.053157.

Article  PubMed  CAS  Google Scholar 

Nortley R, Attwell D. Control of brain energy supply by astrocytes. Curr Opin Neurobiol. 2017;47:80–5. https://doi.org/10.1016/j.conb.2017.09.012.

Article  PubMed  CAS  Google Scholar 

Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 2012;32:1152–66. https://doi.org/10.1038/jcbfm.2011.149.

Article  PubMed  CAS  Google Scholar 

Cataldo AM, Broadwell RD. Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol. 1986;15:511–24. https://doi.org/10.1007/BF01611733.

Article  PubMed  CAS  Google Scholar 

Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B. Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem. 2003;85:73–81. https://doi.org/10.1046/j.1471-4159.2003.01644.x.

Article  PubMed  CAS  Google Scholar 

Magistretti PJ, Allaman I. Glycogen: a Trojan horse for neurons. Nat Neurosci. 2007;10:1341–2. https://doi.org/10.1038/nn1107-1341.

Article  PubMed  CAS  Google Scholar 

Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10:1407–13. https://doi.org/10.1038/nn1998.

Article  PubMed  CAS  Google Scholar 

Duran J, Tevy MF, Garcia-Rocha M, Calbo J, Milan M, Guinovart JJ. Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med. 2012;4:719–29. https://doi.org/10.1002/emmm.201200241.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cali C, Baghabra J, Boges DJ, Holst GR, Kreshuk A, Hamprecht FA, et al. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J Comp Neurol. 2016;524:23–38. https://doi.org/10.1002/cne.23852.

Article  PubMed  CAS  Google Scholar 

Mohammed H, Al-Awami AK, Beyer J, Cali C, Magistretti P, Pfister H, et al. Abstractocyte: a visual tool for exploring nanoscale astroglial cells. IEEE Trans Vis Comput Graph. 2018;24:853–61. https://doi.org/10.1109/TVCG.2017.2744278.

Article  PubMed  Google Scholar 

Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacol Rev. 2020;72:466–85. https://doi.org/10.1124/pr.119.018762.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pellerin L. Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diab Metab. 2010;36(Suppl 3):S59-63. https://doi.org/10.1016/S1262-3636(10)70469-9.

Article  CAS  Google Scholar 

Halestrap AP, Wilson MC. The monocarboxylate transporter family–role and regulation. IUBMB Life. 2012;64:109–19. https://doi.org/10.1002/iub.572.

Article  PubMed  CAS  Google Scholar 

Halestrap AP. The SLC16 gene family—structure, role and regulation in health and disease. Mol Aspects Med. 2013;34:337–49. https://doi.org/10.1016/j.mam.2012.05.003.

Article  PubMed  CAS  Google Scholar 

Elizondo-Vega R, Garcia-Robles MA. Molecular characteristics, regulation, and function of monocarboxylate transporters. Adv Neurobiol. 2017;16:255–67. https://doi.org/10.1007/978-3-319-55769-4_12.

Article  PubMed  Google Scholar 

Chenal J, Pellerin L. Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway. J Neurochem. 2007;102:389–97. https://doi.org/10.1111/j.1471-4159.2007.04495.x.

Article  PubMed  CAS  Google Scholar 

Chenal J, Pierre K, Pellerin L. Insulin and IGF-1 enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway. Eur J Neurosci. 2008;27:53–65. https://doi.org/10.1111/j.1460-9568.2007.05981.x.

Article  PubMed  Google Scholar 

Robinet C, Pellerin L. Brain-derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons. J Cereb Blood Flow Metab. 2010;30:286–98. https://doi.org/10.1038/jcbfm.2009.208.

Article  PubMed  CAS  Google Scholar 

Pierre K, Chatton JY, Parent A, Repond C, Gardoni F, Luca Di, et al. Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor GluR2/3 subunit are associated in a common trafficking process. Eur J Neurosci. 2009;29:1951–63. https://doi.org/10.1111/j.1460-9568.2009.06756.x.

Article  PubMed  Google Scholar 

Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19:235–49. https://doi.org/10.1038/nrn.2018.19.

Article  PubMed  CAS  Google Scholar 

Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, et al. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2008;30:107–20. https://doi.org/10.1016/j.nbd.2007.12.007.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif