Mechanism of client selection by the protein quality-control factor UBE2O

Damgaard, R. B. The ubiquitin system: from cell signaling to disease biology and new therapeutic opportunities. Cell Death Differ. 28, 423–426 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Yanagitani, K., Juszkiewicz, S. & Hegde, R. S. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 357, 472–475 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nguyen, A. T. et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science 357, eaan0218 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Berleth, E. S. & Pickart, C. M. Mechanism of ubiquitin conjugating enzyme E2-230K: catalysis involving a thiol relay? Biochemistry 35, 1664–1671 (1996).

CAS  PubMed  Article  Google Scholar 

Zhang, X. et al. Fine‐tuning BMP7 signalling in adipogenesis by UBE2O/E2‐230K‐mediated monoubiquitination of SMAD6. EMBO J. 32, 996–1007 (2013).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Mashtalir, N. et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54, 392–406 (2014).

CAS  PubMed  Article  Google Scholar 

Ullah, K., Zubia, E., Narayan, M., Yang, J. & Xu, G. Diverse roles of the E2/E3 hybrid enzyme UBE2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J. 286, 2018–2034 (2019).

CAS  PubMed  Article  Google Scholar 

Chen, S. et al. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J. Biol. Chem. 293, 11296–11309 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vila, I. K. et al. A UBE2O–AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy. Cancer Cell 31, 208–224 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, Y. et al. UBE2O targets Mxi1 for ubiquitination and degradation to promote lung cancer progression and radioresistance. Cell Death Differ. 28, 671–684 (2021).

CAS  PubMed  Article  Google Scholar 

Liu, X. et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 11, 10 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Faust, T. B. et al. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. eLife 7, e31879 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Bagger, F. O., Kinalis, S. & Rapin, N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 47, D881–D885 (2019).

CAS  PubMed  Article  Google Scholar 

Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wefes, I. et al. Induction of ubiquitin-conjugating enzymes during terminal erythroid differentiation. Proc. Natl Acad. Sci. USA 92, 4982–4986 (1995).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown, A., Baird, M. R., Yip, M. C., Murray, J. & Shao, S. Structures of translationally inactive mammalian ribosomes. eLife 7, e40486 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

CAS  PubMed  Article  Google Scholar 

Huang, Q., Qin, D., Pei, D., Vermeulen, M. & Zhang, X. UBE2O and USP7 co‐regulate RECQL4 ubiquitinylation and homologous recombination‐mediated DNA repair. FASEB J. 36, e22112 (2022).

CAS  PubMed  Google Scholar 

Zlatanova, J., Seebart, C. & Tomschik, M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J. 21, 1294–1310 (2007).

CAS  PubMed  Article  Google Scholar 

Park, Y.-J. & Luger, K. Structure and function of nucleosome assembly proteins. Biochem. Cell Biol. 84, 549–549 (2006).

CAS  PubMed  Article  Google Scholar 

Rodriguez, P. et al. Functional characterization of human nucleosome assembly Protein-2 (NAP1L4) suggests a role as a histone chaperone. Genomics 44, 253–265 (1997).

CAS  PubMed  Article  Google Scholar 

Attia, M. et al. Interaction between nucleosome assembly protein 1-like family members. J. Mol. Biol. 407, 647–660 (2011).

CAS  PubMed  Article  Google Scholar 

Rössler, I. et al. Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res. 47, 6984–7002 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Warren, C. & Shechter, D. Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J. Mol. Biol. 429, 2401–2426 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Michelle, C., Vourc’h, P., Mignon, L. & Andres, C. R. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J. Mol. Evol. 68, 616–628 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bartke, T., Pohl, C., Pyrowolakis, G. & Jentsch, S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 14, 801–811 (2004).

CAS  PubMed  Article  Google Scholar 

Sheng, Y. et al. A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen. Mol. Cell Proteom. 11, 329–341 (2012).

Article  CAS  Google Scholar 

Plechanovová, A., Jaffray, E., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Roldan, J. L. O. et al. Distinct ubiquitin binding modes exhibited by sh3 domains: molecular determinants and functional implications. PLoS One 8, e73018 (2013).

Article  CAS  Google Scholar 

Stamenova, S. D. et al. Ubiquitin binds to and regulates a subset of SH3 domains. Mol. Cell 25, 273–284 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Elliott, P. R. et al. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Cell Rep. 37, 109777 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Juszkiewicz, S. & Hegde, R. S. Quality control of orphaned proteins. Mol. Cell 71, 443–457 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shimizu, Y. & Ueda, T. PURE technology. Methods Mol. Biol. 607, 11–21 (2010).

CAS  PubMed  Article  Google Scholar 

Feng, Q. & Shao, S. In vitro reconstitution of translational arrest pathways. Methods 137, 20–36 (2018).

CAS  PubMed  Article  Google Scholar 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

CAS  PubMed  Article  Google Scholar 

Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

PubMed  PubMed Central  Article  Google Scholar 

留言 (0)

沒有登入
gif