Lack of Nck1 protein and Nck-CD3 interaction caused the increment of lipid content in Jurkat T cells

Bartelt RR, Cruz-Orcutt N, Collins M, Houtman JCD. Comparison of T cell receptor-induced proximal signaling and downstream functions in immortalized and primary T cells. PLoS ONE. 2009;4(5):e5430–e5430. https://doi.org/10.1371/journal.pone.0005430.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schneider U, Schwenk HU, Bornkamm G. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 1977;19(5):621–6. https://doi.org/10.1002/ijc.2910190505.

CAS  Article  PubMed  Google Scholar 

Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 2004;4(4):301–8. https://doi.org/10.1038/nri1330.

CAS  Article  PubMed  Google Scholar 

Kim JE, White FM. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. J Immunol. 2006;176(5):2833–43. https://doi.org/10.4049/jimmunol.176.5.2833.

CAS  Article  PubMed  Google Scholar 

Huse M. The T-cell-receptor signaling network. J Cell Sci. 2009;122(Pt9):1269–73. https://doi.org/10.1242/jcs.042762.

CAS  Article  PubMed  Google Scholar 

Parsey MV, Lewis GK. Actin polymerization and pseudopod reorganization accompany anti-CD3-induced growth arrest in Jurkat T cells. J Immunol. 1993;151(4):1881–93.

CAS  PubMed  Google Scholar 

Latreille M, Laberge MK, Bourret G, Yamani L, Larose L. Deletion of Nck1 attenuates hepatic ER stress signaling and improves glucose tolerance and insulin signaling in liver of obese mice. Am J Physiol Endocrinol Metab. 2011;300(3):E423–34. https://doi.org/10.1152/ajpendo.00088.2010.

CAS  Article  PubMed  Google Scholar 

Goicoechea SM, Tu Y, Hua Y, Chen K, Shen TL, Guan JL, Wu C. Nck-2 interacts with focal adhesion kinase and modulates cell motility. Int J Biochem Cell Biol. 2002;34:791–805. https://doi.org/10.1016/S1357-2725(02)00002-X.

CAS  Article  PubMed  Google Scholar 

Yamani L, Latreille M, Bourret G, Larose L. Knockout of Nck-1 in mice results in important loss of pancreatic islets but enhances beta cell insulin levels. Can J Diabetes. 2009;33(3):187. https://doi.org/10.1016/S1499-2671(09)33019-1.

Article  Google Scholar 

Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal. 2009;7(1):1-13. https://doi.org/10.1186/1478-811X-7-1.

Ngoenkam J, Paensuwan P, Preechanukul K, Khamsri B, Yiemwattana I, Beck-García E, Minguet S, Schamel WW, Pongcharoen S. Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Commun Signal. 2014;12:21. https://doi.org/10.1186/1478-811x-12-21.

Article  PubMed  PubMed Central  Google Scholar 

Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology. 2018;153(1):42–50. https://doi.org/10.1111/imm.12809.

CAS  Article  PubMed  Google Scholar 

Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, et al. Nck Binds to the T Cell antigen receptor using its SH3.1 and sh2 domains in a cooperative manner, promoting TCR functioning. J Immunol Res. 2016;196(1):448. https://doi.org/10.4049/jimmunol.1500958.

CAS  Article  Google Scholar 

Hem CD, Sundvold-Gjerstad V, Granum S, Koll L, Abrahamsen G, Buday L, Spurkland A. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun Signal. 2015;13(1):31. https://doi.org/10.1186/s12964-015-0109-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000;12(1):23–34. https://doi.org/10.1006/smim.2000.0204.

CAS  Article  PubMed  Google Scholar 

Borroto A, Reyes-Garau D, Jiménez MA, Carrasco E, Moreno B, Martínez-Pasamar S, Cortés JR, Perona A, Abia D, Blanco S, et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med. 2016;8(370):370ra184. https://doi.org/10.1126/scitranslmed.aaf2140.

CAS  Article  PubMed  Google Scholar 

Jung WH, Liu CC, Yu YL, Chang YC, Lien WY, Chao HC, Huang SY, Kuo CH, Ho HC, Chan CC. Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO reports. 2017;18(7):1150–65. https://doi.org/10.15252/embr.201643480.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim HE, Grant AR, Simic MS, Kohnz RA, Nomura DK, Durieux J, Riera CE, Sanchez M, Kapernick E, Wolff S, et al. Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response. Cell. 2016;166(6):1539–52. https://doi.org/10.1016/j.cell.2016.08.027.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yang T, Peng J, Shu Z, Sekar PK, Li S, Gao D. Determination of the membrane transport properties of Jurkat cells with a microfluidic device. Micromachines. 2019;10(12):832. https://doi.org/10.3390/mi10120832.

Article  PubMed Central  Google Scholar 

Gil D, Schamel WW, Montoya M, Sánchez-Madrid F, Alarcón B. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell. 2002;109(7):901–12. https://doi.org/10.1016/s0092-8674(02)00799-7.

CAS  Article  PubMed  Google Scholar 

Yamani L, Latreille M, Larose L. Interaction of Nck1 and PERK phosphorylated at Y561 negatively modulates PERK activity and PERK regulation of pancreatic β-cell proinsulin content. Mol Biol Cell. 2014;25(5):702–11. https://doi.org/10.1091/mbc.E13-09-0511.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dusseault J, Li B, Haider N, Goyette MA, Côté JF, Larose L. Nck2 deficiency in mice results in increased adiposity associated with adipocyte hypertrophy and enhanced adipogenesis. Diabetes. 2016;65(9):2652–66. https://doi.org/10.2337/db15-1559.

CAS  Article  PubMed  Google Scholar 

Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB, Diehl JA. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci USA. 2008;105(42):16314–9. https://doi.org/10.1073/pnas.0808517105.

Article  PubMed  PubMed Central  Google Scholar 

Pinto MEA, Araújo SG, Morais MI, Sá NP, Lima CM, Rosa CA, Siqueira EP, Johann S, Lima LARS. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Cienc. 2017;89(3):1671–81. https://doi.org/10.1590/0001-3765201720160908.

CAS  Article  PubMed  Google Scholar 

Cai P, Kaphalia BS, Ansari GA. Methyl palmitate: inhibitor of phagocytosis in primary rat Kupffer cells. Toxicology. 2005;210(2–3):197–204. https://doi.org/10.1016/j.tox.2005.02.001.

CAS  Article  PubMed  Google Scholar 

Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem. 2001;276(20):16683–9. https://doi.org/10.1074/jbc.M011695200.

CAS  Article  PubMed  Google Scholar 

Hernandez Y, Sotolongo J, Fukata M. Toll-like receptor 4 signaling integrates intestinal inflammation with tumorigenesis: lessons from the murine model of colitis-associated cancer. Cancers. 2011;3(3):3104–13. https://doi.org/10.3390/cancers3033104.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Adebayo I, Arsad H, Samian M. Total phenolics, total flavonoids, antioxidant capacities, and volatile compounds gas chromatography-mass spectrometry profiling of Moringa oleifera ripe seed polar fractions. Pharmacogn Mag. 2018;14(54):191–4. https://doi.org/10.4103/pm.pm_212_17.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huh S, Kim YS, Jung E, Lim J, Jung KS, Kim MO, Lee J, Park D. Melanogenesis inhibitory effect of fatty acid alkyl esters isolated from oxalis triangularis. Biol Pharm Bull. 2010;33:1242–5. https://doi.org/10.1248/bpb.33.1242.

CAS  Article  PubMed  Google Scholar 

Takai S, Jin D, Kawashima H, Kimura M, Shiraishi-Tateishi A, Tanaka T, Kakutani S, Tanaka K, Kiso Y, Miyazaki M. Anti-atherosclerotic effects of dihomo-γ-linolenic acid in ApoE-deficient mice. J Atheroscler Thromb. 2009;16(4):480–9. https://doi.org/10.5551/jat.No430.

CAS  Article  PubMed  Google Scholar 

Xu Y, Qian SY. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed J. 2014;37(3):112–9. https://doi.org/10.4103/2319-4170.131378.

Article  PubMed  Google Scholar 

Kasai N, Mizushina Y, Sugawara F, Sakaguchi K. Three-dimensional structural model analysis of the binding site of an inhibitor, nervonic acid, of both DNA polymerase beta and HIV-1 reverse transcriptase. J Biochem. 2002;132(5):819–28. https://doi.org/10.1093/oxfordjournals.jbchem.a003292.

CAS  Article  PubMed  Google Scholar 

Diakogiannaki E, Dhayal S, Childs CE, Calder PC, Welters HJ, Morgan NG. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. J Endocrinol. 2007;194(2):283–91. https://doi.org/10.1677/joe-07-0082.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Alqarni AM, Dissanayake T, Nelson DJ, Parkinson JA, Dufton MJ, Ferro VA, Watson DG. Metabolomic profiling of the immune stimulatory effect of eicosenoids on PMA-differentiated THP-1 cells. Vaccines. 2019;7(4):142. https://doi.org/10.3390/vaccines7040142.

CAS  Article  PubMed Central  Google Scholar 

Rial SA, Ravaut G, Malaret TB, Bergeron KF, Mounier C. Hexanoic, octanoic and decanoic acids promote basal and insulin-induced phosphorylation of the Akt-mTOR axis and a balanced lipid metabolism in the HepG2 hepatoma cell line. Molecules. 2018;23(9):2315. https://doi.org/10.3390/molecules23092315.

CAS 

留言 (0)

沒有登入
gif