Diversity of endophytic fungi in Coptis chinensis Franch. and their activity against methicillin-resistant Staphylococcus aureus

Al Mousa AA, Mohamed H, Hassane AMA, Abo-Dahab NF (2021) Antimicrobial and cytotoxic potential of an endophytic fungus Alternaria tenuissima AUMC14342 isolated from Artemisia judaica L. growing in Saudi Arabia. J King Saud Univ Sci 33:101462. https://doi.org/10.1016/J.Jksus.2021.101462

Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16. https://doi.org/10.1007/s13225-010-0034-4

Article  Google Scholar 

Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123:373–383. https://doi.org/10.1016/j.funbio.2019.02.003

Article  PubMed  Google Scholar 

Deshmukh SK, Dufosse L, Chhipa H, Saxena S, Mahajan GB, Gupta MK (2022) Fungal endophytes: a potential source of antibacterial compounds. J Fungi (basel) 8:164. https://doi.org/10.3390/Jof8020164

CAS  Article  Google Scholar 

Du W, Yao ZG, Li JL, Sun CL, Xia JB, Wang BG, Shi DL, Ren LL (2020) Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS One 15:e0229589. https://doi.org/10.1371/journal.pone.0229589

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fan M, Chen X, Luo X, Zhang H, Liu Y, Zhang Y, Wu J, Zhao C, Zhao P (2020) Diversity of endophytic fungi from the leaves of Vaccinium dunalianum. Lett Appl Microbiol 71:479–489. https://doi.org/10.1111/lam.13345

Feng Y, Chen HL, Chen CJ, Chen CL, Chiu CH (2017) Genome comparisons of two Taiwanese community-associated methicillin-resistant Staphylococcus aureus ST59 clones support the multi-origin theory of CA-MRSA. Infect Genet Evol 54:60–65. https://doi.org/10.1016/j.meegid.2017.06.018

CAS  Article  PubMed  Google Scholar 

Gupta S, Chaturvedi P, Kulkarni MG, van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462

Kim G, Gan RY, Zhang D, Farha AK, Habimana O, Mavumengwana V, Li HB, Wang XH, Corke H (2020) Large-scale screening of 239 traditional Chinese medicinal plant extracts for their antibacterial activities against multidrug-resistant Staphylococcus aureus and cytotoxic activities. Pathogens 9:185. https://doi.org/10.3390/Pathogens9030185

Article  PubMed Central  Google Scholar 

Kumar V, Prasher IB (2022a) Antimicrobial potential of endophytic fungi isolated from Dillenia indica L. and identification of bioactive molecules produced by Fomitopsis meliae (Undrew.) Murril. Nat Prod Res:1–5. https://doi.org/10.1080/14786419.2022a.2043855

Kumar V, Prasher IB (2022b) Seasonal variation and tissues specificity of endophytic fungi of Dillenia indica L. and their extracellular enzymatic activity. Arch Microbiol 204:341

Loftus RW, Dexter F, Robinson ADM (2018) High-risk Staphylococcus aureus transmission in the operating room: a call for widespread improvements in perioperative hand hygiene and patient decolonization practices. Am J Infect Control 46:1134–1141. https://doi.org/10.1016/j.ajic.2018.04.211

Article  PubMed  Google Scholar 

Manganyi MC, Ateba CN (2020) Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms 8:1934. https://doi.org/10.3390/microorganisms8121934

CAS  Article  PubMed Central  Google Scholar 

Matias RR, Sepulveda AMG, Batista BN, de Lucena JMVM, Albuquerque PM (2021) Degradation of Staphylococcus aureus biofilm using hydrolytic enzymes produced by Amazonian endophytic fungi. Appl Biochem Biotech 193:2145–2161. https://doi.org/10.1007/s12010-021-03542-8

CAS  Article  Google Scholar 

Mei P, Song X, Zhu Z, Li L (2020) First report of root rot caused by Fusarium avenaceum on Coptis chinensis Franchet in Chongqing. China Plant Dis 105(2):496. https://doi.org/10.1094/PDIS-05-20-1110-PDN

Article  Google Scholar 

Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW (2018) Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 13:13. https://doi.org/10.1186/s13020-018-0171-3

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694. https://doi.org/10.1093/jxb/ert342

CAS  Article  PubMed  Google Scholar 

Odeyemi OA, Burke CM, Bolch CCJ, Stanley R (2018) Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 280:87–99. https://doi.org/10.1016/j.ijfoodmicro.2017.12.029

CAS  Article  PubMed  Google Scholar 

Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW (2019) Rhizoma coptidis as a potential treatment agent for type 2 diabetes mellitus and the underlying mechanisms: a review. Front Pharmacol 10:805. https://doi.org/10.3389/Fphar.2019.00805

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med 15:220. https://doi.org/10.1186/S12906-015-0722-4

Article  PubMed  PubMed Central  Google Scholar 

Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114. https://doi.org/10.1093/jxb/erm342

Rui Z, Chang-Pei X, Jing-Jing Z, Hong-Jun Y (2020) Research progress on chemical compositions of Coptidis Rhizoma and pharmacological effects of berberine. Zhongguo Zhong yao za zhi 45:4561–4573. https://doi.org/10.19540/j.cnki.cjcmm.20200527.202

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018. https://doi.org/10.1073/pnas.81.24.8014

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216. https://doi.org/10.1126/science.8097061

CAS  Article  PubMed  Google Scholar 

Uz Zaman KA, Wu X, Hu Z, Yoshida W, Hou S, Saito J, Avad KA, Hevener KE, Alumasa JN, Cao S (2021) Antibacterial kaneoheoic acids A-F from a Hawaiian fungus Fusarium sp. FM701. Phytochemistry 181:112545. https://doi.org/10.1016/j.phytochem.2020.112545

Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB (2019) Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm Biol 57:193–225. https://doi.org/10.1080/13880209.2019.1577466

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang W, Lin X, Jiang T, Peng Z, Xu J, Yi L, Li F, Fanning S, Baloch Z (2018) Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing. China Front Microbiol 9:1123. https://doi.org/10.3389/fmicb.2018.01123

Article  PubMed  Google Scholar 

Wang Z, Yang Y, Liu M, Wei Y, Liu J, Pei H, Li H (2020a) Rhizoma Coptidis for Alzheimer’s disease and vascular dementia: a literature review. Curr Vasc Pharmacol 18:358–368. https://doi.org/10.2174/1570161117666190710151545

CAS  Article  PubMed  Google Scholar 

Wang Z, Zhu J, Li W, Li R, Wang X, Qiao H, Sun Q, Zhang H (2020b) Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int J Biol Macromol 159:231–235. https://doi.org/10.1016/j.ijbiomac.2020.04.269

CAS  Article  PubMed  Google Scholar 

Wei PP, Ji JC, Ma XJ, Li ZH, Ai HL, Lei XX, Liu JK (2022) Three new pyrrole alkaloids from the endophytic fungus Albifimbria viridis. Nat Prod Bioprospect 12:5. https://doi.org/10.1007/s13659-022-00327-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wen H, Li Y, Liu X, Ye W, Yao X, Che Y (2015) Fusagerins A-F, new alkaloids from the fungus Fusarium sp. Nat Prod Bioprospect 5:195–203. https://doi.org/10.1007/s13659-015-0067-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xiao JL, Sun JG, Pang B, Zhou X, Gong Y, Jiang LC, Zhang L, Ding XD, Yin J (2021) Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China. Appl Microbiol Biotechnol 105:755–768. https://doi.org/10.1007/s00253-020-11048-2

CAS  Article  PubMed  Google Scholar 

Xu ZF, Feng W, Shen Q, Yu NN, Yu K, Wang SJ, Chen ZG, Shioda S, Guo Y (2017) Rhizoma Coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation. Aging Dis 8:760–777. https://doi.org/10.14336/Ad.2016.0620

Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103:3327–3340. https://doi.org/10.1007/s00253-019-09713-2

CAS  Article  PubMed  Google Scholar 

Yao YQ, Lan F, Qiao YM, Wei JG, Huang RS, Li LB (2017) Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: diversity and biocontrol potential against phytopathogens. Microbiologyopen 6:e00437. https://doi.org/10.1002/mbo3.437

CAS  Article  PubMed Central  Google Scholar 

Yin GP, Li YJ, Li B, Liu XM, Zhu JJ, Wang ZM, Hu CH (2022a) Secondary metabolites of endophyte fungi Xylaria sp. from Coptis chinensis. Zhongguo Zhong yao za zhi 47:2165–2169. https://doi.org/10.19540/j.cnki.cjcmm.2022a0207.201

Yin GP, Wen C, Li YJ, Shi D, Zhu JJ, Hu CH (2022b) A new polyketide of endophytic fungi Aspergillus sp. ZJ-58 from Coptis chinensis. Zhongguo Zhong yao za zhi 47:967–971. https://doi.org/10.19540/j.cnki.cjcmm.20211102.203

Zhang FH, Xiang JH, Cui WX, Yu J, Wang Y, Li QF (2016) Isolation and identification of berberine from endophytic fungi HL-Y-3. Zhongguo Zhong yao za zhi 41:2998–3001. https://doi.org/10.4268/cjcmm20161609

Zhang X, Xu ZY, Ma JK, Zhou DD, Xu J (2021) Phylogenetic diversity, antimicrobial and antioxidant potential and identification of bioactive compounds from culturable endophytic fungi associated with mangrove Bruguiera sexangula (Lour.) Poir. Curr Microbiol 78:479–489. https://doi.org/10.1007/s00284-020-02314-7

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif