Toward in vivo proof of binding of 18F-labeled inhibitor [18F]TRACK to peripheral tropomyosin receptor kinases

Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25–34.

CAS  PubMed  Article  Google Scholar 

Amatu A, Sartore-Bianchi A, Bencardino K, Pizzutilo EG, Tosi F, Siena S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann Oncol. 2019;30:viii5–15.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lamballe F, Klein R, Barbacid M. TrkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991;66:967–79.

CAS  PubMed  Article  Google Scholar 

Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk protooncogene product: a signal transducing receptor for nerve growth factor. Science. 1991;252:554–8.

CAS  PubMed  Article  Google Scholar 

Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350:158–60.

CAS  PubMed  Article  Google Scholar 

Barbacid MJ. The Trk family of neurotrophin receptors. Neurobiol. 1994;25:1386–403.

CAS  Article  Google Scholar 

Malcangio M, Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and TrkB receptors. Trends Pharmacol Sci. 2003;24:116–21.

CAS  PubMed  Article  Google Scholar 

Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22:123–31.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bothwell M. NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol. 2014;220:3–15.

CAS  PubMed  Article  Google Scholar 

Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361:1545–64.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bertrand T. Crystal structures of neurotrophin receptors kinase domain. Vitam Horm. 2017;104:1–18.

PubMed  Article  Google Scholar 

Barbacid M, Lamballe F, Pulido D, Klein R. The Trk family of tyrosine protein kinase receptors. Biochim Biophys Acta. 1991;1072:115–27.

CAS  PubMed  Google Scholar 

Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

CAS  PubMed  Article  Google Scholar 

Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19:1469–72.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev. 1998;27:1–39.

CAS  PubMed  Article  Google Scholar 

Zhang F, Kang Z, Li W, Xiao Z, Zhou X. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. J Clin Neurosci. 2012;19:946–9.

CAS  PubMed  Article  Google Scholar 

Reinhart V, Bove SE, Volfson D, Lewis DA, Kleiman RJ, Lanz TA. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis. 2015;77:220–7.

CAS  PubMed  Article  Google Scholar 

Song J-H, Yu J-T, Tan L. Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol. 2015;52:1477–93.

CAS  PubMed  Article  Google Scholar 

Meldolesi J. Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol Res. 2017;121:129–37.

CAS  PubMed  Article  Google Scholar 

Ricciuti B, Genova C, Crinò L, Libra M, Leonardi GC. Antitumor activity of larotrectinib in tumors harboring NTRK gene fusions: a short review on the current evidence. Onco Targets Ther. 2019;12:3171–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rohrberg KS, Lassen U. Detecting and targeting NTRK fusions in cancer in the era of tumor agnostic oncology. Drugs. 2021;81:445–52.

CAS  PubMed  Article  Google Scholar 

Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32:147–53.

CAS  PubMed  Article  Google Scholar 

Koizumi H, Morita M, Mikami S, Shibayama E, Uchikoshi T. Immunohistochemical analysis of TrkA neurotrophin receptor expression in human non-neuronal carcinomas. Pathol Int. 1998;48:93–101.

CAS  PubMed  Article  Google Scholar 

Roviello G, D’Angelo A, Sciortino M, Mini E, Nobili S, De Logu F, et al. TRK fusion positive cancers: from first clinical data of a TRK inhibitor to future directions. Crit Rev Oncol Hematol. 2020;152:103011.

PubMed  Article  Google Scholar 

Stenzinger A, van Tilburg CM, Tabatabai G, Länger F, Graf N, Griesinger F, et al. Diagnosis and therapy of tumors with NTRK gene fusion. Pathologe. 2021;42:103–15.

PubMed  Article  Google Scholar 

Federman N, McDermott R. Larotrectinib, a highly selective tropomyosin receptor kinase (TRK) inhibitor for the treatment of TRK fusion cancer. Expert Rev Clin Pharmacol. 2019;12:931–9.

CAS  PubMed  Article  Google Scholar 

Liu D, Offin M, Harnicar S, Li BT, Drilon A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther Clin Risk Manag. 2018;14:1247–52.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW. TRK fusion cancers in children: a clinical review and recommendations for screening. J Clin Oncol. 2019;37:513–24.

CAS  PubMed  Article  Google Scholar 

Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731–47.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn. 2019;21:553–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kirchner M, Glade J, Lehmann U, Merkelbach-Bruse S, Hummel M, Lehmann A, et al. NTRK testing: first results of the QuiP-EQA scheme and a comprehensive map of NTRK fusion variants and their diagnostic coverage by targeted RNA-based NGS assays. Genes Chromosomes Cancer. 2020;59:445–53.

CAS  PubMed  Article  Google Scholar 

Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30:1417–27.

PubMed  Article  Google Scholar 

Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol. 2019;72:460–7.

CAS  PubMed  Article  Google Scholar 

Pfarr N, Kirchner M, Lehmann U, Leichsenring J, Merkelbach-Bruse S, Glade J, et al. Testing NTRK testing: wet-lab and in silico comparison of RNA-based targeted sequencing assays. Genes Chromosomes Cancer. 2020;59:178–88.

CAS  PubMed  Article  Google Scholar 

Solomon JP, Hechtman JF. Detection of NTRK fusions: merits and limitations of current diagnosticplatforms. Cancer Res. 2019;79:3163–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, et al. NTRK fusion detection acrossmultiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33:38–46.

CAS  PubMed  Article  Google Scholar 

Schirrmacher R, Bernard-Gauthier V, Jaworski C, Wangler C, Wangler B, Bailey JJ. Toward imaging tropomyosin receptor kinase (Trk) with positron emission tomography. In: Dierckx RAJO, Otte A, deVries EFJ, van Waarde A, editors. PET and SPECT of neurobiological systems. Switzerland: Springer Nature; 2021. p. 1041–59.

Chapter  Google Scholar 

Bernard-Gauthier V, Aliaga A, Boudjemeline M, Hopewell R, Kostikov A, Rosa-Neto P, et al. Syntheses and evaluation of Carbon-11- and Fluorine-18-radiolabeled pan-tropomyosin receptor kinase (Trk) inhibitors: exploration of the 4-Aza-2-oxindole scaffold as Trk PET imaging agents. ACS Chem Neurosci. 2015;6:260–76.

CAS  PubMed  Article  Google Scholar 

Bernard-Gauthier V, Schirrmacher R. 5-(4-((4-[18F]fluorobenzyl)oxy)-3-methoxy-benzyl)pyrimidine-2,4-diamine: a selective dual inhibitor for potential PET imaging of Trk/CSF-1R. Bioorg Med Chem Lett. 2014;24:4784–90.

留言 (0)

沒有登入
gif