Complete genome sequencing and investigation on the fiber-degrading potential of Bacillus amyloliquefaciens strain TL106 from the tibetan pig

Kong QH, Liu SZ, Li AY, Wang YP, Zhang LH, Iqbal M, et al. Characterization of fungal microbial diversity in healthy and diarrheal Tibetan piglets. BMC Microbiol. 2021;21(1):204–13. https://doi.org/10.1186/s12866-021-02242-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Niu H, Feng XZ, Shi CW, Zhang D, Chen HL, Huang HB, et al. Gut bacterial composition and functional potential of Tibetan pigs under semi-grazing. Front Microbiol. 2022;13:850687. https://doi.org/10.3389/fmicb.2022.850687.

Article  PubMed  PubMed Central  Google Scholar 

Li K, Lan YF, Luo HQ, Shahzad M, Zhang H, Wang L, et al. Prevalence of three Oesophagostomum spp. from Tibetan Pigs analyzed by Genetic Markers of nad1, cox3 and ITS1. Acta Parasitol. 2017;62(1):90–6. https://doi.org/10.1515/ap-2017-0010.

Article  PubMed  Google Scholar 

Huang ZQ, Chen XL, Zhang KY, Yu B, Mao XB, Zhao Y, et al. Molecular cloning and functional characterization of Tibetan Porcine STING. Int J Mol Sci. 2012;13(1):506–15. https://doi.org/10.3390/ijms13010506.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gu XD, Gao YL, Luo Z, Yang L, Chi FM, Xiao J, et al. In-depth mapping of the proteome of Tibetan pig tenderloin (longissimus dorsi) using offline high-pH reversed-phase fractionation and LC-MS/MS. J Food Biochem. 2019;43(11):e13015. https://doi.org/10.1111/jfbc.13015.

Article  PubMed  Google Scholar 

Jiang X, Chen BZ, Gu DS, Rong ZH, Su XH, Yue M, et al. Gut Microbial Compositions in Four Age Groups of Tibetan Minipigs. Polish J Microbiol. 2018;67(3):383–8. https://doi.org/10.21307/pjm-2018-038.

Article  Google Scholar 

Yang WP, Meng FX, Peng JY, Han P, Fang F, Ma L, Cao BY. Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electron J Biotechnol. 2014;17(6):262–7. https://doi.org/10.1016/j.ejbt.2014.08.002.

Article  Google Scholar 

Wang XD, Yao CH, Wang F, Li ZD. Cellulose-Based Nanomaterials for Energy Applications. Small. 2017;13(42):1702240. https://doi.org/10.1002/smll.201702240.

CAS  Article  Google Scholar 

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233-238. https://doi.org/10.1093/nar/gkn663.

CAS  Article  Google Scholar 

Hasper AA, Visser J, de Graaff LH. The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. Mol Microbiol. 2000;36(1):193–200. https://doi.org/10.1046/j.1365-2958.2000.01843.x.

CAS  Article  PubMed  Google Scholar 

Du J, Zhang X, Li XZ, Zhao J, Liu GD, Gao BY, Qu YB. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresour Technol. 2018;266:19–25. https://doi.org/10.1016/j.biortech.2018.06.050.

CAS  Article  PubMed  Google Scholar 

Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006;24(5):452–81. https://doi.org/10.1016/j.biotechadv.2006.03.003.

CAS  Article  PubMed  Google Scholar 

Alonso-Pernas P, Bartram S, Arias-Cordero EM, Novoselov AL, Halty-deLeon L, Shao YQ, Boland W. Corrigendum: In vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the forest cockchafer (Melolontha hippocastani). Front Microbiol. 2018;12(9):488. https://doi.org/10.3389/fmicb.2018.00488.

Article  Google Scholar 

Li HH, Yu H, Sun MT, Alamry KA, Asiri AM, Wang SH. Simultaneous removal and measurement of sulfide on the basis of turn-on fluorimetry. Int J Environ Sci Technol. 2018;15:1193–200. https://doi.org/10.1007/s13762-017-1483-z.

CAS  Article  Google Scholar 

Yadav S, Dubey SK. Cellulose degradation potential of Paenibacillus lautus strain BHU3 and its whole genome sequence. Bioresour Technol. 2018;262:124–31. https://doi.org/10.1016/j.biortech.2018.04.067.

CAS  Article  PubMed  Google Scholar 

Kane SD, French CE. Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi. Enzyme Microbial Technol. 2018;113:9–17. https://doi.org/10.1016/j.enzmictec.2018.02.004.

CAS  Article  Google Scholar 

Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA. Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring. Appl Biochem Biotechnol. 2017;182(4):1390–402. https://doi.org/10.1007/s12010-017-2405-8.

CAS  Article  PubMed  Google Scholar 

Huang CN, Lin CP, Hsieh FC, Lee SK, Cheng KC, Liu CT. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars. World J Microbiol Biotechnol. 2016;32(11):183. https://doi.org/10.1007/s11274-016-2143-z.

CAS  Article  PubMed  Google Scholar 

Ndlovu T, Rautenbach M, Vosloo JA, Khan S, Khan W. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express. 2017;7(1):108–26. https://doi.org/10.1186/s13568-017-0363-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ye M, Sun LH, Yang R, Wang ZG, Qi KZ. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. Royal Soc Open Sci. 2017;4(10):171012. https://doi.org/10.1098/rsos.171012.

CAS  Article  Google Scholar 

Liang YL, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res Int. 2014;2014:512497. https://doi.org/10.1155/2014/512497.

Article  PubMed  PubMed Central  Google Scholar 

Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, et al. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol. 2008;99(2):378–86. https://doi.org/10.1016/j.biortech.2006.12.013.

CAS  Article  PubMed  Google Scholar 

Li HY, Li SN, Wang SX, Wang Q, Xue YY, Zhu BC. Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8. J Appl Ecol. 2015;26(5):1404–10. https://doi.org/10.13287/j.1001-9332.20150302.013.

CAS  Article  Google Scholar 

Bao CL, Liu SZ, Shang ZD, Liu YJ, Wang J, Zhang WX, et al. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J Appl Microbiol. 2020;131(1):470–84. https://doi.org/10.1111/jam.14952.

CAS  Article  PubMed  Google Scholar 

Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673–9. https://doi.org/10.1093/bioinformatics/btm009.

CAS  Article  PubMed  Google Scholar 

Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18. https://doi.org/10.1093/nar/29.12.2607.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64. https://doi.org/10.1093/nar/25.5.955.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Saha S, Bridges S, Magbanua ZV, Peterson DG. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008;36(7):2284–94. https://doi.org/10.1093/nar/gkn064.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. https://doi.org/10.1093/nar/27.2.573.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kent WJ. Blat–the Blast-like alignment tool. Genome Res. 2002;12(4):656–64. https://doi.org/10.1101/gr.229202.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–6. https://doi.org/10.1093/nar/28.1.33.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:354–7. https://doi.org/10.1093/nar/gkj102.

CAS  Article  Google Scholar 

Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50(D1):571–7. https://doi.org/10.1093/nar/gkab1045.

CAS  Article  Google Scholar 

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. https://doi.org/10.1186/s13059-019-1832-y.

Article  PubMed  PubMed Central  Google Scholar 

König J, Grasser R, Pikor H, Vogel K. Determination of xylanase, beta-glucanase, and cellulase activity. Anal Bioanal Chem. 2002;374(1):80–7. https://doi.org/10.1007/s00216-002-1379-7.

CAS  Article  PubMed  Google Scholar 

Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary, Neutral Detergent Fiber and Nonstarch Polysaccharides in Relation to Animal Nutrition. Symposium: Carbohydrate Methodology, Metabolism and Nutritional Implications in Diary Cattle. J Dairy Sci. 1991;74:3583–97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

Article 

留言 (0)

沒有登入
gif