DeepPVC: prediction of a partial volume-corrected map for brain positron emission tomography studies via a deep convolutional neural network

Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

CAS  PubMed  Article  Google Scholar 

Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54.

CAS  PubMed  Article  Google Scholar 

Nelissen N, Laere KV, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the pittsburgh compound b derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50:1251–9.

CAS  PubMed  Article  Google Scholar 

Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.

PubMed  Article  Google Scholar 

Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su M-Y, et al. Early clinical pet imaging results with the novel phf-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.

CAS  PubMed  Article  Google Scholar 

Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel pet radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.

CAS  PubMed  Article  Google Scholar 

Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.

CAS  PubMed  Article  Google Scholar 

Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7.

CAS  PubMed  Article  Google Scholar 

Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

CAS  PubMed  Article  Google Scholar 

Alessio AM, Kinahan PE. Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys. 2006;33:4095–103.

PubMed  Article  Google Scholar 

Baete K, Nuyts J, Laere KV, Van Paesschen W, Ceyssens S, De Ceuninck L, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage. 2004;23:305–17.

PubMed  Article  Google Scholar 

Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11:161–77.

PubMed  Article  Google Scholar 

Meltzer CC, Leal JP, Mayberg HS, Wagner HN, Frost JJ. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr. 1990;14:561–70.

CAS  PubMed  Article  Google Scholar 

Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83.

PubMed  Article  Google Scholar 

Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.

CAS  PubMed  Google Scholar 

Shidahara M, Tsoumpas C, Hammers A, Boussion N, Visvikis D, Suhara T, et al. Functional and structural synergy for resolution recovery and partial volume correction in brain PET. Neuroimage. 2009;44:340–8.

PubMed  Article  Google Scholar 

Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19.

PubMed  Article  Google Scholar 

Arakawa R, Stenkrona P, Takano A, Nag S, Maior RS, Halldin C. Test-retest reproducibility of [11C]-l-deprenyl-D2 binding to MAO-B in the human brain. EJNMMI Res. 2017;7:54.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–9.

PubMed  Article  Google Scholar 

Habert M-O, Bertin H, Labit M, Diallo M, Marie S, Martineau K, et al. Evaluation of amyloid status in a cohort of elderly individuals with memory complaints: validation of the method of quantification and determination of positivity thresholds. Ann Nucl Med. 2018;32:75–86.

CAS  PubMed  Article  Google Scholar 

LaPoint MR, Chhatwal JP, Sepulcre J, Johnson KA, Sperling RA, Schultz AP. The association between tau PET and retrospective cortical thinning in clinically normal elderly. Neuroimage. 2017;157:612–22.

PubMed  Article  Google Scholar 

Schaeverbeke J, Evenepoel C, Declercq L, Gabel S, Meersmans K, Bruffaerts R, et al. Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants. Eur J Nucl Med Mol Imaging. 2018;45:1–16.

Article  CAS  Google Scholar 

Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy Layer-wise Training of Deep Networks. In: Proc 19th Int Conf Neural Inf Process Syst [Internet]. Cambridge, MA, USA: MIT Press; 2006 [cited 2018 Jan 10]. p. 153–60. Available from: http://dl.acm.org/citation.cfm?id=2976456.2976476

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.

PubMed  Article  Google Scholar 

Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M, Nalawade SS, Murugesan GK, Yu FF, et al. A fully automated deep learning network for brain tumor segmentation. Tomography. 2020;6:186–93.

PubMed  PubMed Central  Article  Google Scholar 

Ben Naceur M, Akil M, Saouli R, Kachouri R. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Med Image Anal. 2020;63:101692.

PubMed  Article  Google Scholar 

Naser MA, Deen MJ. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput Biol Med. 2020;121: 103758.

PubMed  Article  Google Scholar 

Windisch P, Weber P, Fürweger C, Ehret F, Kufeld M, Zwahlen D, et al. Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices. Neuroradiology. 2020. https://doi.org/10.1007/s00234-020-02465-1.

Article  PubMed  Google Scholar 

Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, Ma Y, et al. Automated MRI-based deep learning model for detection of Alzheimer’s disease process. Int J Neural Syst. 2020;30:2050032.

PubMed  Article  Google Scholar 

Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X. Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front Neurosci. 2020. https://doi.org/10.3389/fnins.2020.00259/full.

Article  PubMed  PubMed Central  Google Scholar 

Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal. 2020;63: 101694.

PubMed  Article  Google Scholar 

Clèrigues A, Valverde S, Bernal J, Freixenet J, Oliver A, Lladó X. Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput Methods Programs Biomed. 2020;194: 105521.

PubMed  Article  Google Scholar 

Kumar A, Upadhyay N, Ghosal P, Chowdhury T, Das D, Mukherjee A, et al. CSNet: a new DeepNet framework for ischemic stroke lesion segmentation. Comput Methods Programs Biomed. 2020;193: 105524.

PubMed  Article  Google Scholar 

Tomita N, Jiang S, Maeder ME, Hassanpour S. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. NeuroImage Clin. 2020;27: 102276.

PubMed  PubMed Central  Article  Google Scholar 

Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M. FastSurfer - a fast and accurate deep learning based neuroimaging pipeline. Neuroimage. 2020;219: 117012.

PubMed  Article  Google Scholar 

Thyreau B, Taki Y. Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks. Med Image Anal. 2020;61: 101639.

PubMed  Article  Google Scholar 

Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015 [cited 2018 Feb 5]; Available from: https://arxiv.org/abs/1505.04597

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22.

PubMed  Article  Google Scholar 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

CAS  PubMed  Article  Google Scholar 

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

PubMed  Article  Google Scholar 

Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The ADNI PET core. Alzheimers Dement J Alzheimers Assoc. 2010;6:221–9.

Article  Google Scholar 

Matsubara K, Ibaraki M, Shidahara M, Kinoshita T, for the Alzheimer’s Disease Neuroimaging Initiative. Iterative framework for image registration and partial volume correction in brain positron emission tomography. Radiol Phys Technol. 2020;13:349–57.

Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. ArXiv150203167 Cs [Internet]. 2015 [cited 2017 Jul 20]; Available from: http://arxiv.org/abs/1502.03167

Nair V, Hinton GE. Rectified li

留言 (0)

沒有登入
gif