Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction

Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

CAS  Article  Google Scholar 

Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

CAS  Article  Google Scholar 

Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

CAS  PubMed  Article  Google Scholar 

Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).

CAS  PubMed  Article  Google Scholar 

Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998).

CAS  Article  Google Scholar 

Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

CAS  PubMed  Article  Google Scholar 

Ma, S. & Zhou, H.-C. Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010).

CAS  Article  Google Scholar 

Trickett, C. A. et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 1–16 (2017).

Article  CAS  Google Scholar 

Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

CAS  PubMed  Article  Google Scholar 

Duan, J., Jin, W. & Kitagawa, S. Water-resistant porous coordination polymers for gas separation. Coord. Chem. Rev. 332, 48–74 (2017).

CAS  Article  Google Scholar 

Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017).

CAS  PubMed  Article  Google Scholar 

Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019).

CAS  Article  Google Scholar 

Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

CAS  PubMed  Article  Google Scholar 

Xia, W., Mahmood, A., Zou, R. & Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015).

CAS  Article  Google Scholar 

Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

CAS  PubMed  Article  Google Scholar 

Feng, D. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

CAS  Article  Google Scholar 

Park, J. et al. High thermopower in a Zn-based 3D semiconductive metal–organic framework. J. Am. Chem. Soc. 142, 20531–20535 (2020).

CAS  PubMed  Article  Google Scholar 

Della Rocca, J., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

CAS  PubMed  Article  Google Scholar 

Doonan, C., Riccò, R., Liang, K., Bradshaw, D. & Falcaro, P. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc. Chem. Res. 50, 1423–1432 (2017).

CAS  PubMed  Article  Google Scholar 

Cichocka, M. O. et al. A porphyrinic zirconium metal–organic framework for oxygen reduction reaction: tailoring the spacing between active-sites through chain-based inorganic building units. J. Am. Chem. Soc. 142, 15386–15395 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ge, M. et al. High-throughput electron diffraction reveals a hidden novel metal–organic framework for electrocatalysis. Angew. Chem. Int. Ed. 60, 11391–11397 (2021).

CAS  Article  Google Scholar 

Dorset, D. L. & Hauptman, H. A. Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy 1, 195–201 (1976).

CAS  PubMed  Article  Google Scholar 

Dorset, D. L. Electron crystallography—accomplishments and challenges. Acta Crystallogr. A 54, 750–757 (1998).

CAS  PubMed  Article  Google Scholar 

Gemmi, M. et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 5, 1315–1329 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gruene, T., Holstein, J. J., Clever, G. H. & Keppler, B. Establishing electron diffraction in chemical crystallography. Nat. Rev. Chem. 5, 660–668 (2021).

CAS  Article  Google Scholar 

Gruene, T. & Mugnaioli, E. 3D electron diffraction for chemical analysis: instrumentation developments and innovative applications. Chem. Rev. 121, 11823–11834 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, Z., Willhammar, T. & Zou, X. Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond. Chem. Sci. 12, 1206–1219 (2021).

CAS  Article  Google Scholar 

Huang, Z., Grape, E. S., Li, J., Inge, A. K. & Zou, X. 3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 427, 213583 (2021).

CAS  Article  Google Scholar 

Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. Towards automated diffraction tomography: Part I—data acquisition. Ultramicroscopy 107, 507–513 (2007).

CAS  PubMed  Article  Google Scholar 

Kolb, U., Gorelik, T. & Otten, M. T. Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy 108, 763–772 (2008).

CAS  PubMed  Article  Google Scholar 

Mugnaioli, E., Gorelik, T. & Kolb, U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109, 758–765 (2009).

CAS  PubMed  Article  Google Scholar 

Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. Krist. 225, 94–102 (2010).

CAS  Article  Google Scholar 

Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jiang, J. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333, 1131–1134 (2011).

CAS  PubMed  Article  Google Scholar 

Willhammar, T. et al. EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. J. Am. Chem. Soc. 136, 13570–13573 (2014).

CAS  PubMed  Article  Google Scholar 

Guo, P. et al. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature 524, 74–78 (2015).

CAS  PubMed  Article  Google Scholar 

Birkel, C. S. et al. Solution synthesis of a new thermoelectric Zn1+xSb nanophase and its structure determination using automated electron diffraction tomography. J. Am. Chem. Soc. 132, 9881–9889 (2010).

CAS  PubMed  Article  Google Scholar 

Feyand, M. et al. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal–organic framework. Angew. Chem. Int. Ed. 51, 10373–10376 (2012).

CAS  Article  Google Scholar 

Cichocka, M. O., Ångström, J., Wang, B., Zou, X. & Smeets, S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 51, 1652–1661 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif