A rapid screening platform to coculture bacteria within tumor spheroids

Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Harimoto, T. & Danino, T. Engineering bacteria for cancer therapy. Emerg. Top. Life Sci. 3, 623–629 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Chien, T., Doshi, A. & Danino, T. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5, 1–8 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

CAS  PubMed  Article  Google Scholar 

Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

CAS  PubMed  Article  Google Scholar 

Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. Nature 580, 269–273 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lehouritis, P., Springer, C. & Tangney, M. Bacterial-directed enzyme prodrug therapy. J. Control. Release 170, 120–131 (2013).

CAS  PubMed  Article  Google Scholar 

Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

CAS  PubMed  Article  Google Scholar 

Flickinger, J. C. Jr., Rodeck, U. & Snook, A. E. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines (Basel) 6, 48 (2018).

CAS  Article  Google Scholar 

Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

PubMed  Article  Google Scholar 

Roberts, N. J. et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci. Transl. Med. 6, 249ra111 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Nemunaitis, J. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737–744 (2003).

CAS  PubMed  Article  Google Scholar 

Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

CAS  PubMed  Article  Google Scholar 

Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

CAS  PubMed  Article  Google Scholar 

Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Harimoto, T. et al. Rapid screening of engineered microbial therapies in a 3D multicellular model. Proc. Natl Acad. Sci. USA 116, 9002–9007 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chien, T. et al. Enhancing the tropism of bacteria via genetically programmed biosensors. Nat. Biomed. Eng. 6, 94–104 (2022).

CAS  PubMed  Article  Google Scholar 

Zuniga, A. et al. Engineered L-lactate responding promoter system operating in glucose-rich and anoxic environments. ACS Synth. Biol. 10, 3527–3536 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kasper, S. H. et al. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment. Sci. Rep. 10, 5321 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yano, S. et al. Tumor-targeting Salmonella typhimurium A1-R decoys quiescent cancer cells to cycle as visualized by FUCCI imaging and become sensitive to chemotherapy. Cell Cycle 13, 3958–3963 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gao, S. et al. Development of oxytolerant Salmonella typhimurium using radiation mutation technology (RMT) for cancer therapy. Sci. Rep. 10, 3764 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sadaghian Sadabad, M. et al. A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Sci. Rep. 5, 17906 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zheng, D. W. et al. Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 9, 1680 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wang, S. B. et al. Bacteria-assisted selective photothermal therapy for precise tumor inhibition. Adv. Funct. Mater. 29, 1904093 (2019).

Article  CAS  Google Scholar 

Wang, X. N., Niu, M. T., Fan, J. X., Chen, Q. W. & Zhang, X. Z. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy. Nano Lett. 21, 4270–4279 (2021).

CAS  PubMed  Article  Google Scholar 

Song, J. et al. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Sci. Rep. 8, 6394 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hong, J. W., Song, S. & Shin, J. H. A novel microfluidic co-culture system for investigation of bacterial cancer targeting. Lab Chip 13, 3033–3040 (2013).

CAS  PubMed  Article  Google Scholar 

Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, W., Mao, S., He, Z., Wu, Z. & Lin, J. M. In situ monitoring of fluid shear stress enhanced adherence of bacteria to cancer cells on microfluidic chip. Anal. Chem. 91, 5973–5979 (2019).

CAS  PubMed  Article  Google Scholar 

Mokrani, N. et al. Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 4371–4374 (2010).

PubMed  Google Scholar 

Suh, S. et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Adv. Sci. (Weinh.) 6, 1801309 (2019).

Google Scholar 

Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol. Bioeng. 94, 710–721 (2006).

CAS  PubMed  Article  Google Scholar 

Deng, Y., Liu, S. Y., Chua, S. L. & Khoo, B. L. The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model. Biosens. Bioelectron. 180, 113113 (2021).

CAS  PubMed  Article  Google Scholar 

Brackett, E. L., Swofford, C. A. & Forbes, N. S. Microfluidic device to quantify the behavior of therapeutic bacteria in three-dimensional tumor tissue. Methods Mol. Biol. 1409, 35–48 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Goers, L., Freemont, P. & Polizzi, K. M. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11, 20140065 (2014).

PubMed  PubMed Central  Article  CAS 

留言 (0)

沒有登入
gif