[18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer’s disease pathology in APP/PS1 mice

Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91. https://doi.org/10.1016/j.jalz.2007.04.381.

Article  PubMed  Google Scholar 

Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80:1778–83. https://doi.org/10.1212/WNL.0b013e31828726f5.

Article  PubMed  PubMed Central  Google Scholar 

Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804. https://doi.org/10.1056/NEJMoa1202753.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7:137–52. https://doi.org/10.1038/nrneurol.2011.2.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Shang Y, Mishra A, Bacon E, Yin F, Brinton R. Midlife chronological and endocrinological transitions in brain metabolism: system biology basis for increased Alzheimer’s risk in female brain. Sci Rep. 2020;10:8528. https://doi.org/10.1038/s41598-020-65402-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mosconi L, Mistur R, Switalski R, Brys M, Glodzik L, Rich K, et al. Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology. 2009;72:513–20.

CAS  Article  Google Scholar 

Klein JAAS. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest. 2003;111:785–93. https://doi.org/10.1172/JCI200318182.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827:65–75. https://doi.org/10.1016/j.jchromb.2005.04.023.

CAS  Article  PubMed  Google Scholar 

Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4:519–22. https://doi.org/10.3892/br.2016.630.

CAS  Article  PubMed  PubMed Central  Google Scholar 

TE Tonnies E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimer's Dis. 2017;57:1105–21. https://doi.org/10.3233/JAD-161088.

CAS  Article  Google Scholar 

Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–64. https://doi.org/10.1016/j.redox.2017.10.014.

CAS  Article  PubMed  Google Scholar 

McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2011;31:15703–15. https://doi.org/10.1523/JNEUROSCI.0552-11.2011.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8:18–30. https://doi.org/10.1016/j.arr.2008.07.002.

CAS  Article  PubMed  Google Scholar 

Lambert MPBAK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;26:6448–53.

Article  Google Scholar 

Deshpande A, Mina E, Glabe C, Busciglio J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci. 2006;26:6011–8. https://doi.org/10.1523/JNEUROSCI.1189-06.2006.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cappai R, Barnham KJ. Delineating the mechanism of Alzheimer’s disease A beta peptide neurotoxicity. Neurochem Res. 2008;33:526–32. https://doi.org/10.1007/s11064-007-9469-8.

CAS  Article  PubMed  Google Scholar 

Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second centrury. Sci Transl Med. 2011;3:77.

Google Scholar 

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

CAS  Article  Google Scholar 

Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20:148–60. https://doi.org/10.1038/s41583-019-0132-6.

CAS  Article  PubMed  Google Scholar 

Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407. https://doi.org/10.1146/annurev.genet.39.110304.095751.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Osorio RS, et al. Perimenopause and emergence of an Alzheimer’s bioenergetic phenotype in brain and periphery. PLOS ONE. 2017;12:e0185926. https://doi.org/10.1371/journal.pone.0185926.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mosconi L, de Leon M, Murray J, Lezi E, Lu J, Javier E, et al. Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer’s disease. J Alzheimers Dis. 2011;27:483–90. https://doi.org/10.3233/JAD-2011-110866.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Picard M, McManus MJ. Mitochondrial signaling and neurodegeneration. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM, editors. Mitochondrial dysfunction in neurodegenerative disorders. Cham: Springer International Publishing; 2016. p. 107–37.

Chapter  Google Scholar 

Lijia Z, Zhao S, Wang X, Wu C, Yang J. A self-propelling cycle mediated by reactive oxide species and nitric oxide exists in LPS-activated microglia. Neurochem Int. 2012;61:1220–30. https://doi.org/10.1016/j.neuint.2012.09.002.

CAS  Article  PubMed  Google Scholar 

Simpson DSA, Oliver PL. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants Basel. 2020;9:743. https://doi.org/10.3390/antiox9080743.

CAS  Article  PubMed Central  Google Scholar 

West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7. https://doi.org/10.1038/nature14156.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12:222–30. https://doi.org/10.1038/ni.1980.

CAS  Article  PubMed  Google Scholar 

Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neurosci Lett. 2015;584:191–6. https://doi.org/10.1016/j.neulet.2014.10.016.

CAS  Article  PubMed  Google Scholar 

Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Reports. 2014;6:13. https://doi.org/10.12703/p6-13.

Article  PubMed  PubMed Central  Google Scholar 

Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong J-S. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem. 2002;83:973–83. https://doi.org/10.1046/j.1471-4159.2002.01210.x.

CAS  Article  PubMed  Google Scholar 

Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14. https://doi.org/10.1016/j.immuni.2012.01.009.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bianca VD, Dusi S, Bianchini E, Dal Prà I, Rossi F. Beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils: a possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem. 1999;274:15493–9. https://doi.org/10.1074/jbc.274.22.15493.

CAS  Article  PubMed  Google Scholar 

Chu W, Chepetan A, Zhou D, Shoghi KI, Xu J, Dugan LL, et al. Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org Biomol Chem. 2014;12:4421–31. https://doi.org/10.1039/c3ob42379d.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hou C, Hsieh CJ, Li S, Lee H, Graham TJ, Xu K, et al. Development of a positron emission tomography radiotracer for imaging elevated levels of superoxide in neuroinflammation. ACS Chem Neurosci. 2017. https://doi.org/10.1021/acschemneuro.7b00385.

Article  PubMed  Google Scholar 

Cuddihy SL, Ali SS, Musiek ES, Lucero J, Kopp SJ, Morrow JD, et al. Prolonged alpha-tocopherol deficiency decreases oxidative stress and unmasks alpha-tocopherol-dependent regulation of mitochondrial function in the brain. J Biol Chem. 2008;283:6915–24. https://doi.org/10.1074/jbc.M702572200.

CAS  Article  PubMed  Google Scholar 

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif