Clinically Relevant Interactions Between Ritonavir-Boosted Nirmatrelvir and Concomitant Antiseizure Medications: Implications for the Management of COVID-19 in Patients with Epilepsy

FDA (Food and Drug Administration). Fact sheet for healthcare providers: emergency use authorization for Paxlovid. Revised April 14, 2022. Available at: https://www.fda.gov/media/155050/download. Accessed 4 June 2022.

EMA (European Medicines Agency). Paxlovid. Annex 1. Summary of product characteristics. Updated January 28, 2022. Available at: https://www.ema.europa.eu/en/documents/product-information/paxlovid-epar-product-information_en.pdf. Accessed 26 Feb 2022.

COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. Ritonavir-boosted nirmatrelvir. National Institutes of Health. Updated May 31, 2022. Available at https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/. Accessed 3 June 2022.

COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. Therapeutic management of nonhospitalized adults with COVID-19. Updated April 8, 2022. Available at: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/nonhospitalized-adults--therapeutic-management/. Accessed 3 June 2022.

Hsu A, Granneman GR, Bretz RJ. Ritonavir. Clinical pharmacokinetics and interactions with other anti HIV agents. Clin Pharmacokinet. 1998;35:275–91.

CAS  PubMed  Article  Google Scholar 

University of Liverpool. Drug interaction checker. Available at: https://www.covid19-druginteractions.org/checker. Accessed 5 June 2022.

COVID-19 Advisory for Ontario. Science Table. Nirmatrelvir/ritonavir (paxlovid): what prescribers and pharmacists need to know. Published and updated: February 23, 2022. Available at: https://covid19-sciencetable.ca/wp-content/uploads/2022/02/NirmatrelvirRitonavir-Paxlovid-What-Prescribers-and-Pharmacists-Need-to-Know-with-Appendix_20220223.pdf. Accessed 4 June 2022.

Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A, et al. Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. Acquir Immune Defic Syndr. 2004;36:1034–40.

CAS  Article  Google Scholar 

Sekar VJ, Tomaka F, Lavreys L, Meyvisch P, Bleys C, De Pauw M et al. Pharmacokinetic interaction between darunavir in combination with low–dose ritonavir and carbamazepine. Poster Presented at the XVIIth International AIDS Conference, Mexico City, Mexico, August 3–8 2008. Available at http://www.medadvocates.org/resources/conferences/international_aids_conferences/17/darunavir/JD126111Seka%20PosterP'trait.pdf. Accessed 5 June 2022.

Menon RM, Badri PS, Wang T, Polepally AR, Zha J, Khatri A, et al. Drug–drug interaction profile of the all—oral anti-hepatitis C virus regimen of paritaprevir/ritonavir, ombitasvir, and dasabuvir. J Hepatol. 2015;63:20–9.

CAS  PubMed  Article  Google Scholar 

DiCenzo R, Peterson DR, Cruttenden K, Mariuz P, Rezk NL, Hochreiter J, et al. Effects of minocycline and valproic acid coadministration on atazanavir plasma concentrations in human immunodeficiency virus-infected adults receiving atazanavir–ritonavir. Antimicrob Agents Chemother. 2008;52:3035–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Greenblatt DJ, Peters DE, Oleson LE, Harmatz JS, MacNab MW, Berkowitz N, et al. Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase. Br J Clin Pharmacol. 2009;68:920–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mathias AA, German P, Murray BP, Wei L, Jain A, West S, et al. Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010;87:322–9.

CAS  PubMed  Article  Google Scholar 

Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos. 2011;39:1070–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Katzenmaier S, Markert C, Riedel KD, Burhenne J, Haefeli1 WE, Mikus G. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using a limited sampling strategy. Clin Pharmacol Ther. 2011;90:666–73.

Ancrenaz V, Déglon J, Samer C, Staub C, Dayer P, Daali Y, et al. Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers. Basic Clin Pharmacol Toxicol. 2013;112:132–7.

CAS  PubMed  Article  Google Scholar 

Eichbaum C, Cortese M, Blank A, Burherne J, Mikus G. Concentration effect relationship of CYP3A inhibition by ritonavir in humans. Eur J Clin Pharmacol. 2013;69:1795–800.

CAS  PubMed  Article  Google Scholar 

Ieiri I, Tsunemitsu S, Maeda K, Ando Y, Izumi N, Kimura M, et al. Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; micro/small dosing tests using midazolam (CYP3A4), fexofenadine (p-glycoprotein), and pravastatin (OATP1B1) as probe drugs. J Clin Pharmacol. 2013;53:654–61.

CAS  PubMed  Article  Google Scholar 

Stoll F, Burhenne J, Lausecker B, Weiss J, Thomsen T, Haefeli WE, et al. Reduced exposure variability of the CYP3A substrate simvastatin by dose individualization to CYP3A activity. J Clin Pharmacol. 2013;53:1199–204.

CAS  PubMed  Google Scholar 

Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006;42:52–60.

CAS  PubMed  Article  Google Scholar 

Wyen C, Fuhr U, Frank D, Aarnoutse RE, Klaassen T, Lazar A, et al. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther. 2008;84:75–82.

CAS  PubMed  Article  Google Scholar 

Schmitt C, Hofmann C, Riek M, Patel A, Zwanziger E. Effect of saquinavir–ritonavir on cytochrome P450 3A4 activity in healthy volunteers using midazolam as a probe. Pharmacotherapy. 2009;29:1175–81.

CAS  PubMed  Article  Google Scholar 

Mathias AA, West S, Hui J, Kearney BP. Dose-response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure. Clin Pharmacol Ther. 2009;85:64–70.

CAS  PubMed  Article  Google Scholar 

Dumond JB, Vourvahis M, Rezk NL, Patterson KB, Tien HC, White N, et al. A phenotype–genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin Pharmacol Ther. 2010;87:735–42.

CAS  PubMed  Article  Google Scholar 

Morcos PN, Chang L, Kulkarni R, Giraudon M, Shulman N, Brennan BJ, et al. A randomised study of the effect of danoprevir/ritonavir or ritonavir on substrates of cytochrome P450 (CYP) 3A and 2C9 in chronic hepatitis C patients using a drug cocktail. Eur J Clin Pharmacol. 2013;2013(69):1939–49.

Article  CAS  Google Scholar 

Polepally AR, King JR, Ding B, Shuster DL, Dumas EO, Khatri A, et al. Drug-Drug Interactions between the anti-hepatitis C virus 3D regimen of ombitasvir, paritaprevir/ritonavir, and dasabuvir and eight commonly used medications in healthy volunteers. Clin Pharmacokinet. 2016;55:1003–14.

CAS  PubMed  PubMed Central  Article  Google Scholar 

van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, et al. Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2006;80:159–68.

PubMed  Article  CAS  Google Scholar 

Burger DM, Huisman A, Van Ewijk N, Neisingh H, Van Uden P, Rongen GA, et al. The effect of atazanavir and atazanavir/ritonavir on UDP-glucuronosyltransferase using lamotrigine as phenotypic probe. Clin Pharmacol Ther. 2008;84:698–703.

CAS  PubMed  Article  Google Scholar 

Noyman I, Ekstein D, Fahoum F, Herskovitz M, Linder I, Ben Zeev B, et al. Using nirmatrelvir/ritonavir in patients with epilepsy: an update from the Israeli chapter of the International League Against Epilepsy. Epilepsia. 2022;63:1276–8.

CAS  PubMed  Article  Google Scholar 

FDA (Food and Drug Administration). Norvir. Prescribing information. Updated June 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209512lbl.pdf. Accessed 24 March 2022.

Bertz R, Wong C, Carothers L, Lauva L, Dennis S, Valdes J. Evaluation of the pharmacokinetics of multiple dose ritonavir and ketoconazole in combination. Clin Pharmacol Ther. 1998;63:230.

Google Scholar 

Justesen US, Andersen AB, Klitgaard NA, Brøsen K, Gerstoft J, Pedersen C. Pharmacokinetic interaction between rifampin and the combination of indinavir and low-dose ritonavir in HIV-infected patients. Clin Infect Dis. 2004;38:426–9.

CAS  PubMed  Article  Google Scholar 

de Gast M, Burger D, de Lange W, van Crevel R. Double-trouble: a pharmacokinetic study of indinavir ritonavir (800 + 100 mg bid) and rifampin for patients co-infected with TB and HIV. In: Second International Worskhop on Clinical Pharmacology of HIV Therapy, 2-4 April 2001, Noordwijk, The Netherlands, abstract 1–10.

Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;274:1586–93.

Article  CAS  Google Scholar 

EMA (European Medicines Agency), 27 January 2022 EMA/95110/2022—Rev.1 Committee for medicinal products for human use (CHMP) assessment report—paxlovid. Chemical name/international non-proprietary name: (1R,2S,5S)-N-((1S)-1-Cyano-2-((3S)-2-oxopyrrolidin-3-yl)ethyl)-3-((2S)-3,3-dimethyl-2-(2,2,2-trifluoroacetamido)butanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide (PF-07321332)/ritonavir. Procedure No. EMEA/H/C/005973/0000. https://www.ema.europa.eu/en/documents/assessment-report/paxlovid-epar-public-assessment-report_en.pdf. Accessed 26 Feb 2022.

Stader F, Khoo S, Stoeckle M, Back D, Hirsch HH, Battegay M, Marzolini C. Stopping lopinavir/ritonavir in COVID-19 patients: duration of the drug interacting effect. J Antimicrob Chemother. 2020;70:3084–7.

Article  CAS  Google Scholar 

Cato A 3rd, Cavanaugh J, Shi H, Hsu A, Leonard J, Granneman R. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther. 1998;63:414–21.

CAS  PubMed  Article  Google Scholar 

Hsu A, Granneman GR, Cao G, Carothers L, Japour A, El-Shourbagy T, et al. Pharmacokinetic interactions between two human immunodeficiency virus protease inhibitors, ritonavir and saquinavir. Clin Pharmacol Ther. 1998;63:453–64.

CAS  PubMed  Article  Google Scholar 

King JR, Wynn H, Brundage R, Acosta EP. Pharmacokinetic enhancement of protease inhibitor therapy. Clin Pharmacokinet. 2004;43:291–310.

CAS  PubMed  Article  Google Scholar 

Corbett AH, Lim ML, Kashuba AD. Kaletra (lopinavir/ritonavir). Ann Pharmacother. 2002;36:1193–203.

CAS  PubMed  Article  Google Scholar 

EMA (European Medicines Agency). Kaletra—Annex 1. Summary of product characteristics. Updated October 30, 2017. Available at: https://www.ema.europa.eu/en/documents/product-information/kaletra-epar-product-information_en.pdf. Accessed 5 March 2022.

Jain S, Potschka H, Chandra PP, Tripathi M, Vohora D. Management of COVID-19 in patients with seizures: mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug–drug interactions with anti-seizure medications. Epilepsy Res. 2021;174: 106675. https://doi.org/10.1016/j.eplepsyres.2021.106675.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kato Y, Fujii T, Mizoguchi N, Takata N, Ueda K, Feldman MD, Kayser SR. Potential interaction between ritonavir and carbamazepine. Pharmacotherapy. 2000;20:851–4.

CAS  PubMed  Article  Google Scholar 

Burman W, Orr L. Carbamazepine toxicity after starting combination antiretroviral therapy including ritonavir and efavirenz. AIDS. 2000;14:2793–4.

CAS  PubMed  Article  Google Scholar 

Liedtke MD, Lockhart SM, Rathbun RC. Anticonvulsant and antiretroviral interactions. Ann Pharmacother. 2004;38:482–9.

CAS 

留言 (0)

沒有登入
gif