rAAV-mediated over-expression of acid ceramidase prevents retinopathy in a mouse model of Farber lipogranulomatosis

Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis. 2018;13:1–19.

Article  Google Scholar 

Sugita M, Dulaney JT, Moser HW. Ceramidase deficiency in Farber’s disease (Lipogranulomatosis). Science. 1972;178:1100–2.

CAS  PubMed  Article  Google Scholar 

Koch J, Gärtner S, Li C, Quintern LE, Bernardo K, Levran O. et al. Molecular cloning and characterization of a full-length complementary DNAencoding human acid ceramidase: Identification of the first molecular lesion causing farber disease. J Biol Chem. 1996;271:33110–5.

CAS  PubMed  Article  Google Scholar 

Sands MS. Farber disease: Understanding a fatal childhood disorder and dissecting ceramide biology. EMBO Mol. Med. 2013;5:799–801.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zielonka M, Garbade SF, Kölker S, Hoffmann GF, Ries M. A cross-sectional quantitative analysis of the natural history of Farber disease: An ultra-orphan condition with rheumatologic and neurological cardinal disease features. Genet. Med. 2018;20:524–30.

PubMed  Article  Google Scholar 

Zetterström R. Disseminated Lipogranulomatosis (Farber’s Disease). Acta Paediatr. 1958;47:501–10.

Article  Google Scholar 

Tanaka T, Takahashi K, Hakozaki H, Kimoto H, Suzuki Y. Farber’s Disease (Disseminated Lipogranulomatosis) - A Pathological, Histochemical and Ultrastructural Study-. Pathol. Int. 1979;29:135–55.

CAS  Article  Google Scholar 

Zarbin MA, Green WR, Moser AB, Tiffany C. Increased Levels of Ceramide in the Retina of a Patient With Farber’s Disease. Arch. Ophthalmol. 1988;106:1163–1163.

CAS  PubMed  Article  Google Scholar 

Alamri AS, Alshowaeir DA, AlFaiz AA, Mousawi AI, Mahmoud FH, Alhashim AA. et al. Optic Nerve Involvement in Farber Lipogranulomatosis: Expanding the Phenotypic Spectrum. J Neuro-Ophthalmol. 2019;39:391–3.

Article  Google Scholar 

Alayoubi AM, Wang JCM, Au BCY, Carpentier S, Garcia V, Dworski S, et al. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med. 2013;5:827–42.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dworski S, Berger A, Furlonger C, Moreau JM, Yoshimitsu M, Trentadue J, et al. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica. 2015;100:e162–e165.

PubMed  PubMed Central  Article  Google Scholar 

Yu FPS, Sajdak BS, Sikora J, Salmon AE, Nagree MS, Gurka J, et al. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. Am J Pathol. 2019;189:320–38.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barak A, Goldkorn T, Morse LS. Laser induces apoptosis and ceramide production in human retinal pigment epithelial cells. Investig Ophthalmol Vis Sci. 2005;46:2587–91.

Article  Google Scholar 

Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: An overview and current perspectives. Biochim et Biophys Acta Mol Cell Biol Lipids. 2002;1585:114–25.

CAS  Article  Google Scholar 

Ranty ML, Carpentier S, Cournot M, Rico-Lattes I, Malecaze F, Levade T, et al. Ceramide production associated with retinal apoptosis after retinal detachment. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:215–24.

CAS  Article  Google Scholar 

Lou H, Kang D, Yang Q, Lian C, Zhang C, Li Z, et al. Erythropoietin Protects Retina Against Ceramide 2-Induced Damage in Rat. Curr Mol Med. 2018;17:699–706.

Article  CAS  Google Scholar 

Strettoi E, Gargini C, Sala G, Piano I, Gasco P, Ghidoni R. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 2010;107:18706–11.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Simón MV, Spalm Prado, Vera FH, Rotstein MS. N. P. Sphingolipids as emerging mediators in retina degeneration. Front Cell Neurosci. 2019;13:246.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Haddad S, Chen CA, Santangelo SL, Seddon JM. The Genetics of Age-Related Macular Degeneration: A Review of Progress to Date. Surv Ophthalmol. 2006;51:316–63.

PubMed  Article  Google Scholar 

He X, Schuchman EH. Ceramide and Ischemia/Reperfusion Injury. J Lipids 2018;2018:1–11.

Sanvicens N, Cotter TG. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem. 2006;98:1432–44.

CAS  PubMed  Article  Google Scholar 

Sugano E, Edwards G, Saha S, Wilmott LA, Grambergs RC, Mondal K, et al. Overexpression of acid ceramidase (ASAH1) protects retinal cells (ARPE19) from oxidative stress. J Lipid Res. 2019;60:30–43.

CAS  PubMed  Article  Google Scholar 

Opreanu M, Lydic TA, Reid GE, McSorley KM, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Investig Ophthalmo Vis Sci. 2010;51:3253–63.

Article  Google Scholar 

Acharya U, Patel S, Koundakjian E, Nagashima K, Han X, Acharya JK. Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science. 2003;299:1740–3.

CAS  PubMed  Article  Google Scholar 

Fan J, Wu BX, Crosson CE. Suppression of acid sphingomyelinase protects the retina from ischemic injury. Investig Ophthalmol Vis Sci. 2016;57:4476–84.

CAS  Article  Google Scholar 

Stiles M, Qi H, Sun E, Tan J, Porter H, Allegood J, et al. Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res. 2016;57:818–31.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klein R, Klein BEK, Jensen SC, Cruickshanks KJ, Lee KE, Danforth L, et al. Medication use and the 5-year incidence of early age-related maculopathy: The Beaver Dam eye study. Arch Ophthalmol. 2001;119:1354–9.

CAS  PubMed  Article  Google Scholar 

He X, Dworski S, Zhu C, DeAngelis V, Solyom A, Medin JA, et al. Enzyme replacement therapy for Farber disease: Proof-of-concept studies in cells and mice. BBA Clin. 2017;7:85–96.

PubMed  PubMed Central  Article  Google Scholar 

Garbade SF, Zielonka M, Mechler K, Kölker S, Hoffmann GF, Staufner C, et al. FDA orphan drug designations for lysosomal storage disorders - A cross-sectional analysis. PLoS One. 2020;15:e0230898.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lachmann RH. Enzyme replacement therapy for lysosomal storage diseases. Curr Opin Pediatr. 2011;23:588–93.

CAS  PubMed  Article  Google Scholar 

Brooks DA, Kakavanos R, Hopwood JJ. Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder. Trend Mol Med. 2003;9:450–3.

CAS  Article  Google Scholar 

Concolino D, Deodato F, Parini R. Enzyme replacement therapy: Efficacy and limitations. Ital J Pediatr. 2018;44:117–26.

Article  CAS  Google Scholar 

Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21:3–9.

Article  Google Scholar 

Rastall DPW, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.

CAS  PubMed  PubMed Central  Google Scholar 

Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Preparation of PCR-quality mouse genomic dna with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 2000;29:52–54.

CAS  PubMed  Article  Google Scholar 

Reid CA, Lipinski DM. Small and micro-scale recombinant adeno-associated virus production and purification for ocular gene therapy applications. Ret Gene Ther. 2018;1715:19–31.

CAS  Article  Google Scholar 

McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther. 2008;16:1648–56.

CAS  PubMed  Article  Google Scholar 

Li Y, Benitez BA, Nagree MS, Dearborn JT, Jiang X, Guzman MA, et al. Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc Natl Acad Sci USA 2019;116:20097–103.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reid CA, Ertel KJ, Lipinski DM. Improvement of Photoreceptor Targeting via Intravitreal Delivery in Mouse and Human Retina Using Combinatory rAAV2 Capsid Mutant Vectors. Investg Ophthalmol Vis Sci. 2017;58:6429–39.

CAS  Article  Google Scholar 

Piedra J, Ontiveros M, Miravet S, Penalva C, Monfar M, Chillon M. Development of a rapid, robust, and universal PicoGreen-based method to titer adeno-associated vectors. Hum Gene Ther Methods. 2015;26:35–42.

CAS  PubMed  Article  Google Scholar 

Zhang H, Sajdak BS, Merriman DK, McCall MA, Carroll J, Lipinski. Daniel M. Electroretinogram of the cone-dominant thirteen-lined ground squirrel during Euthermia and Hibernation in comparison with the rod-dominant Brown Norway rat. Investig Ophthalmol Vis Sci. 2020;61:6–6.

CAS  Google Scholar 

Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM. Fixation of testes and eyes using a modified Davidson’s fluid: Comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol. 2002;30:524–33.

PubMed  Article 

留言 (0)

沒有登入
gif