The neural basis of sugar preference

Lutter, M. & Nestler, E. J. Homeostatic and hedonic signals interact in the regulation of food intake. J. Nutr. 139, 629–632 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rossi, M. A. & Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42–56 (2018).

CAS  PubMed  Article  Google Scholar 

Yudkin, J. Pure, White, and Deadly: How Sugar is Killing Us and What We Can Do to Stop It (Penguin, 2013).

de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 24.1–24.26 (2020).

Article  Google Scholar 

Zuker, C. S. Food for the brain. Cell 161, 9–11 (2015).

CAS  PubMed  Article  Google Scholar 

Sherrington, C. The Integrative Action of the Nervous System (CUP Archive, 1952).

Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. P. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gutierrez, R., Fonseca, E. & Simon, S. A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell. Mol. Life Sci. 77, 3469–3502 (2020).

CAS  PubMed  Article  Google Scholar 

Smith, D. V. & Margolskee, R. F. Making sense of taste. Sci. Am. 284, 32–39 (2001).

CAS  PubMed  Article  Google Scholar 

Adolph, E. F. Urges to eat and drink in rats. Am. J. Physiol. Content 151, 110–125 (1947).

CAS  Article  Google Scholar 

Richter, C. P. Behavioral regulators of carbohydrate homeostasis. Acta Neuroveg. 9, 247–259 (1954).

CAS  Article  Google Scholar 

Miller, N. E. & Kessen, M. L. Reward effects of food via stomach fistula compared with those of food via mouth. J. Comp. Physiol. Psychol. 45, 555–564 (1952). These experiments were some of the first to suggest the idea that post-ingestive signalling could induce reward.

CAS  PubMed  Article  Google Scholar 

Holman, G. L. Intragastric reinforcement effect. J. Comp. Physiol. Psychol. 69, 432–441 (1969). This paper demonstrated that post-ingestive signals could condition a flavour preference.

CAS  PubMed  Article  Google Scholar 

Puerto, A., Deutsch, J. A., Molina, F. & Roll, P. L. Rapid discrimination of rewarding nutrient by the upper gastrointestinal tract. Science 192, 485–487 (1976).

CAS  PubMed  Article  Google Scholar 

Smith, G. P. Satiation: from gut to brain (Oxford University Press, 1998).

Woods, S. C. The control of food intake: behavioral versus molecular perspectives. Cell Metab. 9, 489–498 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

CAS  PubMed  Article  Google Scholar 

Sclafani, A. Gut–brain nutrient signaling. Appetition vs. satiation. Appetite 71, 454–458 (2013).

PubMed  Article  CAS  Google Scholar 

Sclafani, A. & Ackroff, K. Operant licking for intragastric sugar infusions: differential reinforcing actions of glucose, sucrose and fructose in mice. Physiol. Behav. 153, 115–124 (2016).

CAS  PubMed  Article  Google Scholar 

Sclafani, A. & Glendinning, J. I. Sugar and fat conditioned flavor preferences in C57BL/6J and 129 mice: oral and postoral interactions. Am. J. Physiol. Integr. Comp. Physiol. 289, R712–R720 (2005).

CAS  Article  Google Scholar 

Ferreira, J. G., Tellez, L. A., Ren, X., Yeckel, C. W. & de Araujo, I. E. Regulation of fat intake in the absence of flavour signalling. J. Physiol. 590, 953–972 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sclafani, A., Touzani, K. & Ackroff, K. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice. Physiol. Behav. 147, 141–148 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zukerman, S., Ackroff, K. & Sclafani, A. Rapid post-oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. Am. J. Physiol. Integr. Comp. Physiol. 301, R1635–R1647 (2011).

CAS  Article  Google Scholar 

Sclafani, A. & Ackroff, K. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6J mice. Physiol. Behav. 106, 457–461 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zukerman, S., Ackroff, K. & Sclafani, A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am. J. Physiol. Integr. Comp. Physiol. 305, R840–R853 (2013).

CAS  Article  Google Scholar 

Sclafani, A., Zukerman, S. & Ackroff, K. Postoral glucose sensing, not caloric content, determines sugar reward in C57BL/6J mice. Chem. Senses 40, 245–258 (2015). This work is part of a larger collection of studies by Sclafani and Ackroff24to show that the identity of a particular nutrient is sensed in the intestine and used to determine reward.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Myers, K. P. Robust preference for a flavor paired with intragastric glucose acquired in a single trial. Appetite 48, 123–127 (2007).

PubMed  Article  Google Scholar 

Buchanan, K. L. et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat. Neurosci. 25, 191–200 (2022). This paper demonstrates that sugar preference arises from neuropod cells labelled by the CCK promoter in the proximal small intestine.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nakagawa, Y. et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One 4, e5106 (2009).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kyriazis, G. A., Soundarapandian, M. M. & Tyrberg, B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl Acad. Sci. USA 109, E524–E532 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Simon, B. R. et al. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. J. Biol. Chem. 288, 32475–32489 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Masubuchi, Y. et al. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS One 8, e54500 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ren, X., Zhou, L., Terwilliger, R., Newton, S. & de Araujo, I. E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3, 12 (2009).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Burdakov, D., Gerasimenko, O. & Verkhratsky, A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J. Neurosci. 25, 2429–2433 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yee, K. K., Sukumaran, S. K., Kotha, R., Gilbertson, T. A. & Margolskee, R. F. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc. Natl Acad. Sci. USA 108, 5431–5436 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Suga, T. et al. SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol. Metab. 19, 1–12 (2019).

CAS  PubMed  Article  Google Scholar 

Koepsell, H. Glucose transporters in brain in health and disease. Pflügers Arch. J. Physiol. 472, 1299–1343 (2020).

CAS  Article  Google Scholar 

Delaere, F. et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol. Metab. 2, 47–53 (2013).

CAS  Article  Google Scholar 

Dyer, J., Salmon, K. S. H., Zibrik, L. & Shirazi-Beechey, S. P. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem. Soc. Trans. 33, 302–305 (2005).

CAS  PubMed  Article  Google Scholar 

Gorboulev, V. et al. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).

CAS  PubMed  Article  Google Scholar 

Reimann, F. & Gribble, F. M. Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51, 2757–2763 (2002).

CAS  PubMed  Article  Google Scholar 

Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 28, 58–63 (2001).

留言 (0)

沒有登入
gif