Mitochondrial control of inflammation

Roda, G. et al. Crohn’s disease. Nat. Rev. Dis. Prim. 6, 22 (2020).

PubMed  Article  Google Scholar 

Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00684-6 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Basso, P. J., Andrade-Oliveira, V. & Camara, N. O. S. Targeting immune cell metabolism in kidney diseases. Nat. Rev. Nephrol. 17, 465–480 (2021).

CAS  PubMed  Article  Google Scholar 

Marchi, S., Morroni, G., Pinton, P. & Galluzzi, L. Control of host mitochondria by bacterial pathogens. Trends Microbiol. 30, 452–465 (2022).

CAS  PubMed  Article  Google Scholar 

Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

CAS  PubMed  Article  Google Scholar 

Mantovani, A., Ponzetta, A., Inforzato, A. & Jaillon, S. Innate immunity, inflammation and tumour progression: double-edged swords. J. Intern. Med. 285, 524–532 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

PubMed  Article  Google Scholar 

Petroni, G., Buque, A., Coussens, L. M. & Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug Discov. 21, 440–462 (2022).

CAS  PubMed  Article  Google Scholar 

Rodriguez-Ruiz, M. E., Vitale, I., Harrington, K. J., Melero, I. & Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat. Immunol. 21, 120–134 (2020).

CAS  PubMed  Article  Google Scholar 

Zengeler, K. E. & Lukens, J. R. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat. Rev. Immunol. 21, 454–468 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

CAS  PubMed  Article  Google Scholar 

Vanpouille-Box, C., Hoffmann, J. A. & Galluzzi, L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 18, 845–867 (2019).

CAS  PubMed  Article  Google Scholar 

Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009). Elliott et al. (2009) and Ghiringhelli et al. (2009) document the potent chemotactic and immunostimulatory effects of extracellular ATP.

CAS  PubMed  Article  Google Scholar 

Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00705-4 (2022).

Article  PubMed  Google Scholar 

Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

CAS  PubMed  Article  Google Scholar 

Harapas, C. R. et al. Organellar homeostasis and innate immune sensing. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00682-8 (2022).

Article  PubMed  Google Scholar 

Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

CAS  PubMed  Article  Google Scholar 

Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

CAS  PubMed  Article  Google Scholar 

Klionsky, D. J. et al. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Galluzzi, L., López-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).

CAS  PubMed  Article  Google Scholar 

Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22, 45–64 (2022).

CAS  PubMed  Article  Google Scholar 

Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

CAS  PubMed  Article  Google Scholar 

Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014). White et al. (2014) and Rongvaux et al. (2014) show that robust activation of apoptotic caspases downstream of MOMP suppresses cGAS signalling driven by mtDNA.

CAS  PubMed  PubMed Central  Article  Google Scholar 

West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Andreeva, L. et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549, 394–398 (2017).

CAS  PubMed  Article  Google Scholar 

Zierhut, C. et al. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315.e323 (2019). This study shows that chromatin is a poor cGAS activator and suppresses cGAS signalling elicited by naked dsDNA.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Michalski, S. et al. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587, 678–682 (2020).

CAS  PubMed  Article  Google Scholar 

Zhao, B. et al. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587, 673–677 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, T. et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371, eabc5386 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fuchs, Y. & Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16, 329–344 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Domizio, J. D. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603, 145–151 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wiens, K. E. & Ernst, J. D. The mechanism for type I interferon induction by mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog. 12, e1005809 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7, 3594 (2017).

PubMed 

留言 (0)

沒有登入
gif