Effects of Whole-Body Vibration on Breast Cancer Bone Metastasis and Vascularization in Mice

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

Article  PubMed  Google Scholar 

Cardoso F, Spence D, Mertz S, Corneliussen-James D, Sabelko K, Gralow J, Cardoso MJ et al (2018) Global analysis of advanced/metastatic breast cancer: decade report (2005–2015). Breast 39:131–138. https://doi.org/10.1016/j.breast.2018.03.002

Article  PubMed  Google Scholar 

Chen YC, Sosnoski DM, Mastro AM (2010) Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res 12:215. https://doi.org/10.1186/bcr2781

CAS  Article  PubMed  PubMed Central  Google Scholar 

Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425. https://doi.org/10.1038/nrc3055

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ryan C, Stoltzfus KC, Horn S, Chen H, Louie AV, Lehrer EJ, Trifiletti DM et al (2020) Epidemiology of bone metastases. Bone 158:115783. https://doi.org/10.1016/j.bone.2020.115783

Article  PubMed  Google Scholar 

Oster G, Lamerato L, Glass AG, Richert-Boe KE, Lopez A, Chung K, Richhariya A et al (2013) Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer 21:3279–3286. https://doi.org/10.1007/s00520-013-1887-3

Article  PubMed  Google Scholar 

Jara MA, Varghese J, Hu MI (2021) Adverse events associated with bone-directed therapies in patients with cancer. Bone 158:115901. https://doi.org/10.1016/j.bone.2021.115901

CAS  Article  PubMed  Google Scholar 

Hong AR, Kim SW (2018) Effects of resistance exercise on bone health. Endocrinol Metab 33:435–444. https://doi.org/10.3803/EnM.2018.33.4.435

Article  Google Scholar 

Zhang S, Huang X, Zhao X, Li B, Cai Y, Liang X, Wan Q (2021) Effect of exercise on bone mineral density among patients with osteoporosis and osteopenia: a systematic review and network meta-analysis. J Clin Nurs. https://doi.org/10.1111/jocn.16101

Article  PubMed  PubMed Central  Google Scholar 

Fornusek CP, Kilbreath SL (2017) Exercise for improving bone health in women treated for stages I-III breast cancer: a systematic review and meta-analyses. J Cancer Surviv 11:525–541. https://doi.org/10.1007/s11764-017-0622-3

Article  PubMed  Google Scholar 

Singh B, Toohey K (2022) The effect of exercise for improving bone health in cancer survivors—a systematic review and meta-analysis. J Sci Med Sport 25:31–40. https://doi.org/10.1016/j.jsams.2021.08.008

Article  PubMed  Google Scholar 

Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, Guo Y et al (2020) Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res 8:9. https://doi.org/10.1038/s41413-020-0083-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang S, Pei S, Wasi M, Parajuli A, Yee A, You L, Wang L (2021) Moderate tibial loading and treadmill running, but not overloading, protect adult murine bone from destruction by metastasized breast cancer. Bone 153:116100. https://doi.org/10.1016/j.bone.2021.116100

CAS  Article  PubMed  Google Scholar 

Husebø AM, Dyrstad SM, Søreide JA, Bru E (2013) Predicting exercise adherence in cancer patients and survivors: a systematic review and meta-analysis of motivational and behavioural factors. J Clin Nurs 22:4–21. https://doi.org/10.1111/j.1365-2702.2012.04322.x

Article  PubMed  Google Scholar 

Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604. https://doi.org/10.1038/35088122

CAS  Article  PubMed  Google Scholar 

Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33:317–325. https://doi.org/10.1016/S0021-9290(99)00210-9

CAS  Article  PubMed  Google Scholar 

Huang RP, Rubin CT, McLeod KJ (1999) Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci 54:B352–B357. https://doi.org/10.1093/gerona/54.8.B352

CAS  Article  PubMed  Google Scholar 

Mogil RJ, Kaste SC, Ferry RJ Jr, Hudson MM, Mulrooney DA, Howell CR, Partin RE et al (2016) Effect of low-magnitude, high-frequency mechanical stimulation on BMD among young childhood cancer survivors: a randomized clinical trial. JAMA Oncol 2:908–914. https://doi.org/10.1001/jamaoncol.2015.6557

Article  PubMed  PubMed Central  Google Scholar 

Baker MK, Peddle-McIntyre CJ, Galvão DA, Hunt C, Spry N, Newton RU (2018) Whole body vibration exposure on markers of bone turnover, body composition, and physical functioning in breast cancer patients receiving aromatase inhibitor therapy: a randomized controlled trial. Integr Cancer Ther 17:968–978. https://doi.org/10.1177/1534735418781489

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pagnotti GM, Adler BJ, Green DE, Chan ME, Frechette DM, Shroyer KR, Beamer WG et al (2012) Low magnitude mechanical signals mitigate osteopenia without compromising longevity in an aged murine model of spontaneous granulosa cell ovarian cancer. Bone 51:570–577. https://doi.org/10.1016/j.bone.2012.05.004

Article  PubMed  PubMed Central  Google Scholar 

Pagnotti GM, Chan ME, Adler BJ, Shroyer KR, Rubin J, Bain SD, Rubin CT (2016) Low intensity vibration mitigates tumor progression and protects bone quantity and quality in a murine model of myeloma. Bone 90:69–79. https://doi.org/10.1016/j.bone.2016.05.014

Article  PubMed  PubMed Central  Google Scholar 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121. https://doi.org/10.1152/physrev.00038.2010

CAS  Article  PubMed  Google Scholar 

Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77:1745–1770. https://doi.org/10.1007/s00018-019-03351-7

CAS  Article  PubMed  Google Scholar 

Matsumoto T, Itamochi S, Hashimoto Y (2016) Effect of concurrent use of whole-body vibration and parathyroid hormone on bone structure and material properties of ovariectomized mice. Calcif Tissue Int 98:520–529. https://doi.org/10.1007/s00223-015-0104-4

CAS  Article  PubMed  Google Scholar 

Matsumoto T, Goto D, Sato S (2013) Subtraction micro-computed tomography of angiogenesis and osteogenesis during bone repair using synchrotron radiation with a novel contrast agent. Lab Invest 93:1054–1063. https://doi.org/10.1038/labinvest.2013.87

CAS  Article  PubMed  Google Scholar 

Doube M, Kłosowski MM, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS, Schmid B et al (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079. https://doi.org/10.1016/j.bone.2010.08.023

Article  PubMed  PubMed Central  Google Scholar 

Birks S, Uzer G (2021) At the nuclear envelope of bone mechanobiology. Bone 151:116023. https://doi.org/10.1016/j.bone.2021.116023

CAS  Article  PubMed  Google Scholar 

Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G et al (2015) Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells 33:2063–2076. https://doi.org/10.1002/stem.2004

Article  PubMed  PubMed Central  Google Scholar 

Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728. https://doi.org/10.1016/S0021-9258(19)84086-3

CAS  Article  PubMed  Google Scholar 

Gao H, Zhai M, Wang P, Zhang X, Cai J, Chen X, Shen G et al (2017) Low-level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling-associated mechanism. Mol Med Rep 16:317–324. https://doi.org/10.3892/mmr.2017.6608

CAS  Article  PubMed  Google Scholar 

Lu Y, Zhao Q, Liu Y, Zhang L, Li D, Zhu Z, Gan X et al (2018) Vibration loading promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway. J Biomech 71:67–75. https://doi.org/10.1016/j.jbiomech.2018.01.039

Article  PubMed  Google Scholar 

Minematsu A, Nishii Y, Imagita H, Takeshita D, Sakata S (2016) Whole-body vibration can attenuate the deterioration of bone mass and trabecular bone microstructure in rats with spinal cord injury. Spinal Cord 54:597–603. https://doi.org/10.1038/sc.2015.220

CAS  Article  PubMed  Google Scholar 

Jing D, Luo E, Cai J, Tong S, Zhai M, Shen G, Wang X et al (2016) Mechanical vibration mitigates the decrease of bone quantity and bone quality of leptin receptor-deficient db/db mice by promoting bone formation and inhibiting bone resorption. J Bone Miner Res 31:1713–1724. https://doi.org/10.1002/jbmr.2837

CAS  Article  PubMed  Google Scholar 

Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H (2015) Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 71:17–24. https://doi.org/10.1016/j.bone.2014.09.026

CAS  Article  PubMed  Google Scholar 

Zhou Y, Guan X, Zhu Z, Gao S, Zhang C, Li C, Zhou K et al (2011) Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation. Eur Cell Mater 22:12–25. https://doi.org/10.22203/ecm.v022a02

CAS  Article  PubMed  Google Scholar 

Lau E, Al-Dujaili S, Guenther A, Liu D, Wang L, You L (2010) Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone 46:1508–1515. https://doi.org/10.1016/j.bone.2010.02.031

留言 (0)

沒有登入
gif