Exercise and Exercise Mimetics for the Treatment of Musculoskeletal Disorders

Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, Cesari M, Chumlea WC, Doehner W, Evans J, Fried LP, Guralnik JM, Katz PR, Malmstrom TK, McCarter RJ, GutierrezRobledo LM, Rockwood K, von Haehling S, Vandewoude MF, Walston J. Frailtyconsensus: a call to action. J Am Med Dir Assoc. 2018;14(6):392–7. https://doi.org/10.1016/j.jamda.2013.03.022.

Article  Google Scholar 

Briggs AM, Cross MJ, Hoy DG, Sànchez-Riera L, Blyth FM, Woolf AD, March L. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56(Suppl2):S243–55. https://doi.org/10.1093/geront/gnw002.

Article  PubMed  Google Scholar 

Fallon CK, Karlawish J. Is the WHO definition of health aging well? Frameworks for "Health" After Three Score and Ten. Am J Public Health. 2019;109(8):1104–6. https://doi.org/10.2105/AJPH.2019.305177.

Article  PubMed  PubMed Central  Google Scholar 

Clark PM, Ellis BM. A public health approach to musculoskeletal health. Best Pract Res Clin Rheumatol. 2014;28(3):517–32. https://doi.org/10.1016/j.berh.2014.10.002.

CAS  Article  PubMed  Google Scholar 

McGuigan FE, Bartosch P, Åkesson KE. Musculoskeletal health and frailty. Best Pract Res Clin Rheumatol. 2017;31(2):145–59. https://doi.org/10.1016/j.berh.2017.11.002.

Article  PubMed  Google Scholar 

Crow RS, Lohman MC, Titus AJ, Cook SB, Bruce ML, Mackenzie TA, Bartels SJ, Batsis JA. Association of obesity and frailty in older adults: NHANES 1999-2004. J Nutr Health Aging. 2019;23(2):138–44. https://doi.org/10.1007/s12603-018-1138-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99(1):427–511. https://doi.org/10.1152/physrev.00061.2017.

Article  PubMed  Google Scholar 

Hambright WS, Niedernhofer LJ, Huard J, Robbins PD. Murine models of accelerated aging and musculoskeletal disease. Bone. 2019;125:122–7. https://doi.org/10.1016/j.bone.2019.03.002.

CAS  Article  PubMed  Google Scholar 

Davies B, García F, Ara I, Artalejo FR, Rodriguez-Mañas L, Walter S. Relationship between sarcopenia and frailty in the Toledo study of healthy aging: a population based cross-sectional study. J Am Med Dir Assoc. 2018;19(4):282–6. https://doi.org/10.1016/j.jamda.2017.09.014.

CAS  Article  PubMed  Google Scholar 

Pin F, Bonewald LF, Bonetto A. Role of myokines and osteokines in cancer cachexia. Exp Biol Med (Maywood). 2021;246(19):2118–27. https://doi.org/10.1177/15353702211009213.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Beltrà M, Pin F, Ballarò R, Costelli P, Penna F. Mitochondrial dysfunction in cancer cachexia: impact on muscle health and regeneration. Cells. 2021;10(11):3150. https://doi.org/10.3390/cells10113150.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li W, Swiderski K, Murphy KT, Lynch GS. Role for plant-derived antioxidants in attenuating cancer cachexia. Antioxidants (Basel). 2022;11(2):183. https://doi.org/10.3390/antiox11020183.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Srivastava RK, Sapra L. The rising era of “Immunoporosis”: role of immune system in the pathophysiology of osteoporosis. J Inflamm Res. 2022;15:1667–98. https://doi.org/10.2147/JIR.S351918.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–42. https://doi.org/10.1038/s41577-019-0178-8.

CAS  Article  PubMed  Google Scholar 

Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: pathophysiology and therapeutic options. EXCLI J. 2020;19:1017–37. https://doi.org/10.17179/excli2020-2591.

Article  PubMed  PubMed Central  Google Scholar 

Makuch S, Więcek K, Woźniak M. The immunomodulatory and anti-inflammatory effect of curcumin on immune cell populations, cytokines, and in vivo models of rheumatoid arthritis. Pharmaceuticals (Basel). 2021;14(4):309. https://doi.org/10.3390/ph14040309.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev. 2020;41(4):594–609. https://doi.org/10.1210/endrev/bnaa016. Erratum in: Endocr Rev. 2021;42(1):97-99. Overview of the effects of myokines on metabolism, in particular bone formation.

Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology (Bethesda). 2015;30(1):8–16. https://doi.org/10.1152/physiol.00033.2014.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu S, Huang H, Chai S, Wei H, Huang J, Wan L. Expression profile analysis of long non-coding RNA in skeletal muscle of osteoporosis by microarray and bioinformatics. J Biol Eng. 2019;13:50. https://doi.org/10.1186/s13036-019-0180-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dolan E, Sale C. Protein and bone health across the lifespan. Proc Nutr Soc. 2019;78(1):45–55. https://doi.org/10.1017/S0029665118001180.

CAS  Article  PubMed  Google Scholar 

Kirk B, Al Saedi A, Duque G. Osteosarcopenia: a case of geroscience. Aging Med (Milton). 2019;2(3):147–56. https://doi.org/10.1002/agm2.12080.

Article  PubMed  PubMed Central  Google Scholar 

• Colaianni G, Storlino G, Sanesi L, Colucci S, Grano M. Myokines and osteokines in the pathogenesis of muscle and bone diseases. Curr Osteoporos Rep. 2020;18(4):401-407. https://doi.org/10.1007/s11914-020-00600-8. Extensive overview of the molecules produced by muscle and bone in physiological and pathological conditions.

Suh J, Kim N-K, Lee S-H, Eom J-H, Lee Y, Park J-C, Woo KM, Baek JH, Kim JE, Ryoo HM, Lee SJ, Lee YS. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. Proc Natl Acad Sci USA. 2020;117:4910–20. https://doi.org/10.1073/pnas.1916034117.

CAS  Article  PubMed  PubMed Central  Google Scholar 

He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and muscle crosstalk in aging. Front Cell Dev Biol. 2020;8:585644. https://doi.org/10.3389/fcell.2020.585644.

Article  PubMed  PubMed Central  Google Scholar 

Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, New MI, Zaidi M, Cinti S, Grano M. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA. 2015;112(39):12157-62. https://doi.org/10.1073/pnas.1516622112. Erratum in: Proc Natl Acad Sci USA. 2015;112(42):E5763.

Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 2021;22(6):2851. https://doi.org/10.3390/ijms22062851.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Karsenty G, Olson EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016;164(6):1248–56. https://doi.org/10.1016/j.cell.2016.02.043.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Afzali AM, Müntefering T, Wiendl H, Meuth SG, Ruck T. Skeletal muscle cells actively shape (auto)immune responses. Autoimmun Rev. 2018;17(5):518–29. https://doi.org/10.1016/j.autrev.2017.12.005.

CAS  Article  PubMed  Google Scholar 

Nelke C, Dziewas R, Minnerup J, Meuth SG, Ruck T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine. 2019;49:381–8. https://doi.org/10.1016/j.ebiom.2019.10.034.

Article  PubMed  PubMed Central  Google Scholar 

Rong YD, Bian AL, Hu HY, Ma Y, Zhou XZ. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018;18(1):308. https://doi.org/10.1186/s12877-018-1007-9.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Madaro L, Passafaro M, Sala D, Etxaniz U, Lugarini F, Proietti D, Alfonsi MV, Nicoletti C, Gatto S, De Bardi M, Rojas-García R, Giordani L, Marinelli S, Pagliarini V, Sette C, Sacco A, Puri PL. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol. 2018;20(8):917–27. https://doi.org/10.1038/s41556-018-0151-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang Z, Zhong L, Zhu J, Xu H, Ma W, Zhang L, Shen Y, Law BY, Ding F, Gu X, Sun H. Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Ann Transl Med. 2020;8(24):1681. https://doi.org/10.21037/atm-20-7269. Erratum in: Ann Transl Med. 2021;9(9):826.

Guadagnin E, Mázala D, Chen YW. STAT3 in skeletal muscle function and disorders. Int J Mol Sci. 2018;19(8):2265. https://doi.org/10.3390/ijms19082265.

CAS  Article  PubMed Central  Google Scholar 

Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris LG, Zimmers TA. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 2012;303(3):E410–21. https://doi.org/10.1152/ajpendo.00039.2012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kistner TM, Pedersen BK, Lieberman DE. Interleukin 6 as an energy allocator in muscle tissue. Nat Metab. 2022;4(2):170–9. https://doi.org/10.1038/s42255-022-00538-4.

CAS  Article  PubMed  Google Scholar 

Graber TG, Ferguson-Stegall L, Liu H, Thompson LV. Voluntary aerobic exercise reverses frailty in old mice. J Gerontol A Biol Sci Med Sci. 2015;70(9):1045–58. https://doi.org/10.1093/gerona/glu163.

Article  PubMed  Google Scholar 

Bisset ES, Heinze-Milne S, Grandy SA, Howlett SE. Corrigendum to: aerobic exercise attenuates frailty in aging male and female C57Bl/6 mice and affects systemic cytokines differentially by sex. J Gerontol A Biol Sci Med Sci. 2022;77(2):291. https://doi.org/10.1093/gerona/glab350.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif