In vitro activity and adaptation strategies of eravacycline in clinical Enterococcus faecium isolates from China

Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Microbiol Spectr. 2019;7:GPP3-0053-2018.

Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018;41:76–82.

PubMed  Google Scholar 

Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10:266–78.

CAS  PubMed  PubMed Central  Google Scholar 

Lebreton F, van Schaik W, Manson McGuire A, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S et al: Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains. mBio. 2013;4:e00534–00513.

Murray BE. Vancomycin-resistant Enterococcal infections. N Engl J Med. 2000;342:710–21.

Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Jorgensen SCJ, Rybak MJ. Evaluation of Eravacycline: a novel fluorocycline. Pharmacotherapy. 2020;40:221–38.

CAS  PubMed  Google Scholar 

Lee YR, Burton CE. Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis. 2019;38:1787–94.

CAS  PubMed  Google Scholar 

Scott LJ. Eravacycline: a review in complicated intra-abdominal infections. Drugs. 2019;79:315–24.

CAS  PubMed  PubMed Central  Google Scholar 

Thabit AK, Monogue ML, Newman JV, Nicolau DP. Assessment of in vivo efficacy of eravacycline against Enterobacteriaceae exhibiting various resistance mechanisms: a dose-ranging study and pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents. 2018;51:727–32.

CAS  PubMed  Google Scholar 

Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial agents Chemother. 2016;60:3840–44.

CAS  Google Scholar 

Monogue ML, Thabit AK, Hamada Y, Nicolau DP. Antibacterial efficacy of Eravacycline in vivo against gram-positive and gram-negative organisms. Antimicrobial agents Chemother. 2016;60:5001–5.

CAS  Google Scholar 

Sutcliffe JA, O’Brien W, Fyfe C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrobial agents Chemother. 2013;57:5548–58.

CAS  Google Scholar 

Zhang F, Bai B, Xu GJ, Lin ZW, Li GQ, Chen Z, Cheng H, Sun X, Wang HY, Chen, Zheng JX, Deng QW, Yu ZJYW. Eravacycline activity against clinical S. aureus isolates from China: in vitro activity, MLST profiles and heteroresistance. BMC Microbiol. 2018;18:211.

CAS  PubMed  PubMed Central  Google Scholar 

Zheng J, Lin Z, Sun X, Lin W, Chen Z, Wu Y, Qi G, Deng Q, Qu D, Yu Z. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7:139.

PubMed  PubMed Central  Google Scholar 

Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN. Tetracycline antibiotics and resistance mechanisms. Biol Chem. 2014;395:559–75.

CAS  PubMed  Google Scholar 

Wen Z, Shang Y, Xu G, Pu Z, Lin Z, Bai B, Chen Z, Zheng J, Deng Q, Yu Z. Mechanism of Eravacycline resistance in clinical Enterococcus faecalis Isolates from China. Front Microbiol. 2020;11:916.

PubMed  PubMed Central  Google Scholar 

Chen Y, Hu D, Zhang Q, Liao XP, Liu YH, Sun J. Efflux pump overexpression contributes to tigecycline heteroresistance in Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol. 2017;7:37.

PubMed  PubMed Central  Google Scholar 

Liu H, Jia X, Zou H, Sun S, Li S, Wang Y, Xia Y. Detection and characterization of tigecycline heteroresistance in E. cloacae: clinical and microbiological findings. Emerg Microbes Infect. 2019;8:564–74.

CAS  PubMed  PubMed Central  Google Scholar 

Caglan E, Nigiz S, Sancak B, Gur D. Resistance and heteroresistance to colistin among clinical isolates of Acinetobacter baumannii. Acta microbiologica et immunologica Hungarica. 2019;52:1–5.

Google Scholar 

Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J antimicrobial Chemother. 2016;71:871–81.

CAS  Google Scholar 

Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6:a025387.

PubMed  PubMed Central  Google Scholar 

Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrobial agents Chemother. 2008;52:980–90.

CAS  Google Scholar 

Reyes J, Panesso D, Tran TT, Mishra NN, Cruz MR, Munita JM, Singh KV, Yeaman MR, Murray BE, Shamoo, Garsin D, Bayer AS, Arias CAY. A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis. J Infect Dis. 2015;211:1317–25.

CAS  PubMed  Google Scholar 

Scherl A, François P, Charbonnier Y, Deshusses JM, Koessler T, Huyghe A, Bento M, Stahl-Zeng J, Fischer A, Masselot, Vaezzadeh A, Gallé F, Renzoni A, Vaudaux P, Lew D, Zimmermann-Ivol CG, Binz PA, Sanchez JC, Hochstrasser DF, Schrenzel JA. Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. BMC genomics. 2006;7:296.

PubMed  PubMed Central  Google Scholar 

Drummelsmith J, Winstall E, Bergeron MG, Poirier GG, Ouellette M. Comparative proteomics analyses reveal a potential biomarker for the detection of vancomycin-intermediate Staphylococcus aureus strains. J proteome Res. 2007;6:4690–702.

CAS  PubMed  Google Scholar 

Jousselin A, Renzoni A, Andrey DO, Monod A, Lew DP, Kelley WL. The posttranslocational chaperone lipoprotein PrsA is involved in both glycopeptide and oxacillin resistance in Staphylococcus aureus. Antimicrobial agents Chemother. 2012;56:3629–40.

CAS  Google Scholar 

Zheng J-X, Lin Z-W, Chen C, Chen Z, Lin F-J, Wu Y, Yang S-Y, Sun X, Yao W-M, Li D-Y, Yu Z-J, Jin J-L, Qu D, Deng Q-W. Biofilm formation in Klebsiella pneumoniae bacteremia strains was found to be associated with CC23 and the presence of wcaG. Front Cell Infect Microbiol. 2018;8:21.

Institute CaLS: Performance standards for antimicrobial susceptibility testing: 24th Informational supplement. Document M100-S26. Wayne, PA: Clinical and Laboratory Standards Institute 2016.

Bai B, Lin Z, Pu Z, Xu G, Zhang F, Chen Z, Sun X, Zheng J, Li P, Deng, Yu ZQ. In vitro activity and heteroresistance of omadacycline against clinical Staphylococcus aureus isolates from China reveal the impact of Omadacycline susceptibility by branched-chain amino acid transport system II carrier protein, Na/Pi cotransporter family protein, and fibronectin-binding protein. Front Microbiol. 2019;10:2546.

PubMed  PubMed Central  Google Scholar 

Bai B, Hu K, Li H, Yao W, Li D, Chen Z, Cheng H, Zheng J, Pan W, Deng M, Liu X, Lin Z, Deng Q, Yu Z. Effect of tedizolid on clinical Enterococcus isolates: in vitro activity, distribution of virulence factor, resistance genes and multilocus sequence typing. FEMS Microbiol Lett. 2018;365:fnx284.

Linkevicius M, Sandegren L, Andersson DI. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrobial agents Chemother. 2016;60:789–96.

CAS  Google Scholar 

Sader HS, Castanheira M, Farrell DJ, Flamm RK, Mendes RE, Jones RN. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: results from SENTRY Antimicrobial Surveillance Program (2011-2014). Int J Antimicrob Agents. 2016;48:144–50.

CAS  PubMed  Google Scholar 

Ahmed MO, Baptiste KE. Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb drug resistance (Larchmt, NY). 2018;24:590–606.

CAS  Google Scholar 

Bassetti M, Corey R, Doi Y, Morrissey I, Grossman T, Olesky M, Scoble P, Sutcliffe J. In Vitro Global Surveillance of Eravacycline and Comparators Against Staphylococcus spp. and Enterococcus spp. Over a 3-Year Period (2013–2015). Open Forum Infectious Diseases. 2016;3.

Lagace-Wiens PRS, Adam HJ, Laing NM, Baxter MR, Martin I, Mulvey MR, Karlowsky JA, Hoban DJ, Zhanel GG. Antimicrobial susceptibility of clinical isolates of Neisseria gonorrhoeae to alternative antimicrobials with therapeutic potential. J antimicrobial Chemother. 2017;72:2273–7.

CAS  Google Scholar 

Solomkin JS, Ramesh MK, Cesnauskas G, Novikovs N, Stefanova P, Sutcliffe JA, Walpole SM, Horn PT. Phase 2, randomized, double-blind study of the efficacy and safety of two dose regimens of eravacycline versus ertapenem for adult community-acquired complicated intra-abdominal infections. Antimicrobial agents Chemother. 2014;58:1847–54.

Google Scholar 

Zhanel GG, Baxter MR, Adam HJ, Sutcliffe J, Karlowsky JA. In vitro activity of eravacycline against 2213 Gram-negative and 2424 Gram-positive bacterial pathogens isolated in Canadian hospital laboratories: CANWARD surveillance study 2014-2015. Diagn Microbiol Infect Dis. 2018;91:55–62.

CAS  PubMed  Google Scholar 

Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS. Tracing the Enterococci from paleozoic origins to the hospital. Cell. 2017;169:849–61.e813.

CAS  PubMed  PubMed Central  Google Scholar 

Freitas AR, Novais C, Ruiz-Garbajosa P, Coque TM, Peixe L. Dispersion of multidrug-resistant Enterococcus faecium isolates belonging to major clonal complexes in different Portuguese settings. Appl Environ Microbiol. 2009;75:4904–8.

CAS  PubMed  PubMed Central  Google Scholar 

Ahmed M, Elramalli A, Baptiste K, Daw M, Zorgani A, Brouwer E, Willems R, Top J. Whole Genome sequence analysis of the first vancomycin-resistant enterococcus faecium isolates from a Libyan hospital in Tripoli. Microb Drug Resist. 2020;26:1390–8.

Eisenberger D, Tuschak C, Werner M, Bogdan C, Bollinger T, Hossain H, Friedrich P, Hussein Z, Pöhlmann C, Würstl B, Nickel S, Lehner-Reindl V, Höller C, Liebl B, Valenza G. Whole-genome analysis of vancomycin-resistant Enterococcus faecium causing nosocomial outbreaks suggests the occurrence of few endemic clonal lineages in Bavaria, Germany. J antimicrob Chemother. 2020;75:1398–404.

Khan MA, Northwood JB, Loor RGJ, Tholen ATR, Riera E, Falcón M, Network PA, van Belkum A, van Westreenen M, Hays JP. High prevalence of ST-78 infection-associated vancomycin-resistant Enterococcus faecium from hospitals in Asunción, Paraguay. Clin Microbiol Infect. 2010;16:624–7.

CAS  PubMed  Google Scholar 

Sun L, Xu J, Wang W, He F. Emergence of vanA-type vancomycin-resistant Enterococcus faecium ST 78 Strain with a rep2-type plasmid carrying a Tn1546-like element isolated from a urinary tract infection in China. Infect drug resistance. 2020;13:949–55.

Google Scholar 

Beabout K, Hammerstrom TG, Perez AM, Magalhaes BF, Prater AG, Clements TP, Arias CA, Saxer G, Shamoo Y. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrobial agents Chemother. 2015;59:5561–6.

CAS  Google Scholar 

Niebel M, Quick J, Prieto AMG, Hill RLR, Pike R, Huber D, David M, Hornsey M, Wareham D, Oppenheim, Woodford N, van Schaik W, Loman NB. Deletions in a ribosomal protein-coding gene are associated with tigecycline resistance in Enterococcus faecium. Int J Antimicrob Agents. 2015;46:572–5.

CAS  PubMed  Google Scholar 

Lee CR, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol. 2015;6:828.

PubMed  PubMed Central  Google Scholar 

Shi Y, Hua X, Xu Q, Yang Y, Zhang L, He J, Mu X, Hu L, Leptihn S, Yu Y. Mechanism of eravacycline resistance in Acinetobacter baumannii mediated by a deletion mutation in the sensor kinase adeS, leading to elevated expression of the efflux pump AdeABC. Infect Genet Evol. 2020;80:104185.

CAS  PubMed  Google Scholar 

Xu Y, Tang Y, Wang N, Liu J, Cai X, Cai H, Li J, Tan G, Liu R, Bai, Zhang L, Wu H, Zhang BL. Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol. 2020;104:2575–87.

CAS  PubMed  Google Scholar 

Pieper R, Gatlin-Bunai CL, Mongodin EF, Parmar PP, Huang ST, Clark DJ, Fleischmann RD, Gill SR, Peterson SN. Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics. 2006;6:4246–58.

留言 (0)

沒有登入
gif