Proteasome-dependent truncation of the negative heterochromatin regulator Epe1 mediates antifungal resistance

Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

CAS  PubMed  Article  Google Scholar 

Perlin, D. S., Rautemaa-Richardson, R. & Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis. 17, e383–e392 (2017).

PubMed  Article  Google Scholar 

Robbins, N., Caplan, T. & Cowen, L. E. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol. 71, 753–775 (2017).

CAS  PubMed  Article  Google Scholar 

Stop neglecting fungi. Nat. Microbiol. 2, 17120 (2017).

Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

CAS  PubMed  Article  Google Scholar 

Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11, e00449-20 (2020).

PubMed  PubMed Central  Google Scholar 

Audergon, P. N. C. B. et al. Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ragunathan, K., Jih, G. & Moazed, D. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015).

PubMed  Article  CAS  Google Scholar 

Cerulus, B., New, A. M., Pougach, K. & Verstrepen, K. J. Noise and epigenetic inheritance of single-cell division times influence population fitness. Curr. Biol. 26, 1138–1147 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

CAS  PubMed  Article  Google Scholar 

Calo, S. et al. Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature 513, 555–558 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bheda, P. et al. Single-cell tracing dissects regulation of maintenance and inheritance of transcriptional reinduction memory. Mol. Cell 78, 915–925 (2020).

CAS  PubMed  Article  Google Scholar 

Torres-Garcia, S. et al. Epigenetic gene silencing by heterochromatin primes fungal resistance. Nature 585, 453–458 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Whittaker, C. & Dean, C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu. Rev. Cell Dev. Biol. 33, 555–575 (2017).

CAS  PubMed  Article  Google Scholar 

Miska, E. A. & Ferguson-Smith, A. C. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance. Science 354, 59–63 (2016).

CAS  PubMed  Article  Google Scholar 

Duempelmann, L., Skribbe, M. & Bühler, M. Small RNAs in the transgenerational inheritance of epigenetic information. Trends Genet. 36, 203–214 (2020).

CAS  PubMed  Article  Google Scholar 

Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995).

CAS  PubMed  Article  Google Scholar 

Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

CAS  PubMed  Article  Google Scholar 

Wang, J. et al. The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev. 30, 827–839 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol. 15, 1808–1819 (2005).

CAS  PubMed  Article  Google Scholar 

Zofall, M. et al. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335, 96–100 (2012).

CAS  PubMed  Article  Google Scholar 

Sugiyama, T. et al. Enhancer of rudimentary cooperates with conserved RNA-processing factors to promote meiotic mRNA decay and facultative heterochromatin assembly. Mol. Cell 61, 747–759 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yamanaka, S. et al. RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 493, 557–560 (2013).

CAS  PubMed  Article  Google Scholar 

Zofall, M., Smith, D. R., Mizuguchi, T., Dhakshnamoorthy, J. & Grewal, S. I. S. Taz1-shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol. Cell 62, 862–874 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gallagher, P. S. et al. Iron homeostasis regulates facultative heterochromatin assembly in adaptive genome control. Nat. Struct. Mol. Biol. 25, 372–383 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, J., Reddy, B. D. & Jia, S. Rapid epigenetic adaptation to uncontrolled heterochromatin spreading. eLife 2015, e06179 (2015).

Article  CAS  Google Scholar 

Trewick, S. C., Minc, E., Antonelli, R., Urano, T. & Allshire, R. C. The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J. 26, 4670–4682 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, J., Lawry, S. T., Cohen, A. L. & Jia, S. Chromosome boundary elements and regulation of heterochromatin spreading. Cell. Mol. Life Sci. 71, 4841–4852 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Antequera, F., Tamame, M., Villanueva, J. R. & Santos, T. DNA methylation in the fungi. J. Biol. Chem. 259, 8033–8036 (1984).

CAS  PubMed  Article  Google Scholar 

Capuano, F., Mülleder, M., Kok, R., Blom, H. J. & Ralser, M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in saccharomyces cerevisiae, schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86, 3697–3702 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rape, M. & Jentsch, S. Productive RUPture: activation of transcription factors by proteasomal processing. Biochim. Biophys. Acta 1695, 209–213 (2004).

CAS  PubMed  Article  Google Scholar 

Tian, L. & Matouschek, A. Where to start and when to stop. Nat. Struct. Mol. Biol. 13, 668–670 (2006).

CAS  PubMed  Article  Google Scholar 

Li, F. et al. Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 135, 272–283 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Thodberg, M. et al. Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Res. 47, 1671–1691 (2019).

CAS  PubMed  Article  Google Scholar 

Bohn, S. et al. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc. Natl Acad. Sci. USA 107, 20992–20997 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gordon, C., McGurk, G., Dillon, P., Rosen, C. & Hastie, N. D. Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature 366, 355–357 (1993).

CAS  PubMed  Article  Google Scholar 

Manasanch, E. E. & Orlowski, R. Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417–433 (2017).

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif