Natural killer cells in antitumour adoptive cell immunotherapy

Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

CAS  Article  PubMed  Google Scholar 

Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

CAS  PubMed Central  Article  PubMed  Google Scholar 

June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

CAS  Article  PubMed  Google Scholar 

Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

CAS  Article  PubMed  Google Scholar 

Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022). This landmark article reports the sustained remissions and in vivo persistence of CD19-CAR T cells for more than 10 years after infusion, and hence highlights the long-term durability of clinical responses achieved using genetically engineered T cells.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Malmberg, K.-J. et al. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31, 20–29 (2017).

CAS  Article  PubMed  Google Scholar 

Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E. & Raulet, D. H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol. 182, 4572–4580 (2009). This study elucidates the nature of NK cell responsiveness, which relies on the integration of both inhibitory and activating signalling cues to ensure self-tolerance and immunosurveillance over abnormal cells.

CAS  Article  PubMed  Google Scholar 

Joncker, N. T., Shifrin, N., Delebecque, F. & Raulet, D. H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med. 207, 2065–2072 (2010).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Burshtyn, D. N. et al. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity 4, 77–85 (1996).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Yokoyama, W. M. & Kim, S. How do natural killer cells find self to achieve tolerance? Immunity 24, 249–257 (2006).

CAS  Article  PubMed  Google Scholar 

Brodin, P., Lakshmikanth, T., Johansson, S., Kärre, K. & Höglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

CAS  Article  PubMed  Google Scholar 

Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000).

CAS  Article  PubMed  Google Scholar 

Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

CAS  PubMed Central  Article  PubMed  Google Scholar 

López-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

Article  CAS  PubMed  Google Scholar 

Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Dalle, J.-H. et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr. Res. 57, 649–655 (2005).

CAS  Article  PubMed  Google Scholar 

Strauss-Albee, D. M. et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci. Transl. Med. 7, 297ra115–297ra115 (2015).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Prager, I. & Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019).

CAS  Article  PubMed  Google Scholar 

Wang, W., Erbe, A. K., Hank, J. A., Morris, Z. S. & Sondel, P. M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 6, 368 (2015).

PubMed Central  PubMed  Google Scholar 

O’Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006). This seminal study demonstrates that NK cells can mediate durable recall responses upon antigen re-exposure, establishing the concept of NK cell adaptive memory.

Article  CAS  PubMed  Google Scholar 

Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009). This important article reveals self-renewing ‘memory’ NK cell subsets that can undergo secondary expansion and elicit strong adaptive immune responses upon viral challenge when transferred to naive animals.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009). This work pioneers the concept of cytokine-induced memory-like NK cells which elicit robust recall responses when transferred to naïve hosts.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Romee, R. et al. Cytokine activation induces human memory-like NK cells. Blood 120, 4751–4760 (2012).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123 (2016).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Shapiro, R. M. et al. Expansion, persistence, and efficacy of donor memory-like NK cells infused for post-transplant relapse. J. Clin. Investig. https://doi.org/10.1172/JCI154334 (2022).

Article  PubMed Central  PubMed  Google Scholar 

Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

CAS  Article  PubMed  Google Scholar 

Sun, C. et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology 6, e1264562 (2017).

Article  CAS  PubMed  Google Scholar 

Spanholtz, J. et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS ONE 5, e9221 (2010).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Dolstra, H. et al. Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin. Cancer Res. 23, 4107–4118 (2017).

CAS  Article  PubMed  Google Scholar 

Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018). This article reports the first successful clinical application of CAR-modified NK immunotherapy in patients with CD19-positive haematologic malignancies.

CAS  Article  PubMed  Google Scholar 

Berrien-Elliott, M. M. et al. Multidimensional analyses of donor memory-like NK cells reveal new associations with response after adoptive immunotherapy for leukemia. Cancer Discov. 10, 1854–1871 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

CAS  PubMed Central 

留言 (0)

沒有登入
gif