Systematic study of single-cell isolation from musculoskeletal tissues for single-sell sequencing

Mazzarello P. A unifying concept: the history of cell theory. NAT CELL BIOL. 1999;1(1):E13–5.

CAS  PubMed  Article  Google Scholar 

Hu P, Zhang W, Xin H, Deng G. Single Cell Isolation and Analysis. Frontiers in cell and developmental biology. 2016;4:116.

PubMed  PubMed Central  Article  Google Scholar 

He X, Memczak S, Qu J, Belmonte JCI, Liu G. Single-cell omics in ageing: a young and growing field. Nat Metab. 2020;2(4):293–302.

PubMed  Article  Google Scholar 

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. NAT METHODS. 2009;6(5):377–82.

CAS  PubMed  Article  Google Scholar 

Grün D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell. 2015;163(4):799–810.

PubMed  Article  CAS  Google Scholar 

Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K. Experimental Considerations for Single-Cell RNA Sequencing Approaches. Front Cell Dev Biol. 2018;6:108.

PubMed  PubMed Central  Article  Google Scholar 

Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell. 2019;177(7):1915–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Boxberger JI, Sen S, Yerramalli CS, Elliott DM. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J ORTHOP RES. 2006;24(9):1906–15.

CAS  PubMed  Article  Google Scholar 

Inoue N, Espinoza OA. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):487–99.

PubMed  PubMed Central  Article  Google Scholar 

Gan Y, He J, Zhu J, Xu Z, Wang Z, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9(1):37.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, et al. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep-Uk. 2020;10(1):15263.

CAS  Article  Google Scholar 

Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. In: International Journal of Molecular Sciences., vol. 22; 2021.

Zhang Y, Han S, Kong M, Tu Q, Zhang L, et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthr Cartilage. 2021;29(9):1324–34.

CAS  Article  Google Scholar 

Tu J, Li W, Yang S, Yang P, Yan Q, et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. bioRxiv. 2021:2021–2025.

Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood. 2004;104(9):2728–35.

CAS  PubMed  Article  Google Scholar 

Prideaux M, Schutz C, Wijenayaka AR, Findlay DM, Campbell DG, Solomon LB, et al. Isolation of osteocytes from human trabecular bone. Bone. 2016;88:64–72.

CAS  PubMed  Article  Google Scholar 

Inoue N, Espinoza Orías AA. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):487.

PubMed  PubMed Central  Article  Google Scholar 

Choi Y. Pathophysiology of degenerative disc disease. Asian spine journal. 2009;3(1):39–44.

PubMed  PubMed Central  Article  Google Scholar 

Zhou Z, Gao M, Wei F, Liang J, Deng W, Dai X, et al. Shock absorbing function study on denucleated intervertebral disc with or without hydrogel injection through static and dynamic biomechanical tests in vitro. BIOMED RES INT. 2014;2014: 461724.

PubMed  PubMed Central  Google Scholar 

Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976). 2004;29(23):2691–9.

Article  Google Scholar 

Urban JPG, Roberts S, Ralphs JR. The Nucleus of the Intervertebral Disc from Development to Degeneration1. Am Zool. 2015;40(1):53–61.

Google Scholar 

Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J CLIN INVEST. 1996;98(4):996–1003.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, et al. Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop. 2012;2012: 970752.

PubMed  PubMed Central  Article  Google Scholar 

Hemanta D, Jiang X, Feng Z, Chen Z, Cao Y. Etiology for Degenerative Disc Disease. Chin Med Sci J. 2016;31(3):185–91.

PubMed  Article  Google Scholar 

Lee JT, Cheung KM, Leung VY. Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. J ORTHOP RES. 2015;33(12):1743–55.

CAS  PubMed  Article  Google Scholar 

Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, et al. Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. CARTILAGE. 2020;11(2):169–80.

CAS  PubMed  Article  Google Scholar 

Nam DC, Lee HJ, Lee CJ, Hwang S. Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL). BIOMOL THER. 2019;27(4):342–8.

Article  Google Scholar 

Zhang Q, Zhou D, Wang H, Tan J. Heterotopic ossification of tendon and ligament. J CELL MOL MED. 2020;24(10):5428–37.

PubMed  PubMed Central  Article  Google Scholar 

Choi BW, Song KJ, Chang H. Ossification of the posterior longitudinal ligament: a review of literature. Asian Spine J. 2011;5(4):267–76.

PubMed  PubMed Central  Article  Google Scholar 

ONO K, OTA H, TADA K, HAMADA H, TAKAOKA K. Ossified Posterior Longitudinal Ligament: A Clinicopathologic Study. SPINE. 1977;2(2).

Hashizume Y. Pathological studies on the ossification of the posterior longitudinal ligament (opll). Acta Pathol Jpn. 1980;30(2):255–73.

CAS  PubMed  Google Scholar 

Sophia FA, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. SPORTS HEALTH. 2009;1(6):461–8.

Article  Google Scholar 

Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. LANCET. 2018;392(10159):1789–1858.

Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014;7(1):37–41.

CAS  PubMed  PubMed Central  Google Scholar 

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019;393(10182):1745–59.

CAS  Article  Google Scholar 

Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis. J AUTOIMMUN. 2020;110: 102400.

CAS  PubMed  Article  Google Scholar 

McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. NEW ENGL J MED. 2011;365(23):2205–19.

CAS  PubMed  Article  Google Scholar 

Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations. npj Regenerative Medicine. 2019;4(1):12.

Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. ANN RHEUM DIS. 2019;78(1):100–10.

CAS  PubMed  Article  Google Scholar 

Grandi FC, Baskar R, Smeriglio P, Murkherjee S, Indelli PF, Amanatullah DF, et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. SCI ADV. 2020;6(11): y5352.

Article  CAS  Google Scholar 

Li J, Luo H, Wang R, Lang J, Zhu S, Zhang Z, et al. Systematic Reconstruction of Molecular Cascades Regulating GP Development Using Single-Cell RNA-Seq. CELL REP. 2016;15(7):1467–80.

CAS  PubMed  Article  Google Scholar 

Sunkara V, Heinz G, Heinrich F, Durek P, Mobasheri A, Mashreghi M, et al. Combining segmental bulk- and single-cell RNA-sequencing to define the chondrocyte gene expression signature in the murine knee joint. In.: bioRxiv; 2020.

Mizuhashi K, Nagata M, Matsushita Y, Ono W, Ono N. Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells. J BONE MINER RES. 2019;34(8):1387–92.

CAS  PubMed  Article  Google Scholar 

Kelly NH, Huynh N, Guilak F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. MATRIX BIOL. 2020;89:1–10.

CAS  PubMed  Article  Google Scholar 

Renner WA, Jordan M, Eppenberger HM, Leist C. Cell-cell adhesion and aggregation: Influence on the growth behavior of CHO cells. BIOTECHNOL BIOENG. 1993;41(2):188–93.

CAS  PubMed  Article  Google Scholar 

Reichard A, Asosingh K. Best Practices for Preparing a Single Cell Suspension from Solid Tissues for Flow Cytometry. Cytometry A. 2019;95(2):219–26.

CAS 

留言 (0)

沒有登入
gif