Biochemical effects of copper nanomaterials in human hepatocellular carcinoma (HepG2) cells

Arnal N, de Alaniz MJ, Marra CA. Effect of copper overload on the survival of HepG2 and A-549 human-derived cells. Hum Exp Toxicol. 2013;32(3):299–315.

CAS  PubMed  Article  Google Scholar 

Blasco J, Puppo J. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999;122(2):253–63.

CAS  PubMed  Article  Google Scholar 

Boulard M, Blume KG, Beutler E. The effect of copper on red cell enzyme activities. J Clin Invest. 1972;51(2):459–61.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chusuei CC, Wu CH, Mallavarapu S, Hou FY, Hsu CM, Winiarz JG, et al. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. Chem Biol Interact. 2013;206(2):319–26.

CAS  PubMed  Article  Google Scholar 

Cuillel M, Chevallet M, Charbonnier P, Fauquant C, Pignot-Paintrand I, Arnaud J, et al. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale. 2014;6(3):1707–15.

CAS  PubMed  Article  Google Scholar 

Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B: Biointerfaces. 2010;79(1):5–18.

CAS  PubMed  Article  Google Scholar 

Deiss A, Lee GR, Cartwright GE. Hemolytic anemia in Wilson's disease. Ann Intern Med. 1970;73(3):413–8.

CAS  PubMed  Article  Google Scholar 

Dobryszycka W, Owczarek H. Effects of lead, copper, and zinc on the rat’s lactate dehydrogenase in vivo and in vitro. Arch Toxicol. 1981;48(1):21–7.

CAS  PubMed  Article  Google Scholar 

Fairbanks VF. Copper sulfate-induced hemolytic anemia. Inhibition of glucose-6-phosphate dehydrogenase and other possible etiologic mechanisms. Arch Intern Med. 1967;120(4):428–32.

CAS  PubMed  Article  Google Scholar 

Faixová Z, Faix S, Makova Z, Prosbová M. Effect of divalent ions on ruminal enzyme activities in sheep. Acta Vet Brno. 2006;56(1):17–23.

Article  Google Scholar 

Flikweert JP, Hoorn R, Stall G. The effect of copper on human erythrocyte glutathione reductase. Int J BioChemiPhysics. 1974;5:649–53.

CAS  Article  Google Scholar 

Griffitt RJ, Hyndman K, Denslow ND, Barber DS. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci. 2009;107(2):404–15.

CAS  PubMed  Article  Google Scholar 

Hendren CO, Lowry GV, Unrine JM, Wiesner MR. A functional assay-based strategy for nanomaterial risk forecasting. Sci Total Environ. 2015;536:1029–37.

CAS  PubMed  Article  Google Scholar 

Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, et al. Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci. 2005;88(1):12–7.

CAS  PubMed  Article  Google Scholar 

Hu W, Zhi L, Zhuo MQ, Zhu QL, Zheng JL, Chen QL, et al. Purification and characterization of glucose 6-phosphate dehydrogenase (G6PD) from grass carp (Ctenopharyngodon idella) and inhibition effects of several metal ions on G6PD activity in vitro. Fish Physiol Biochem. 2013;39(3):637–47.

CAS  PubMed  Article  Google Scholar 

Hu HL, Ni XS, Duff-Canning S, Wang XP. Oxidative damage of copper chloride overload to the cultured rat astrocytes. Am J Transl Res. 2016;8(2):1273–80.

CAS  PubMed  PubMed Central  Google Scholar 

Kitchin KT, Robinette BL, Richards J, Coates NH, Castellon BT. Biochemical effects in HepG2 cells exposed to six TiO2 and four CeO2 nanomaterials. J Nanosci Nanotechnol. 2016;16(9):9505–34.

CAS  Article  Google Scholar 

Kitchin KT, Stirdivant S, Robinette BL, Castellon BT, Liang X. Metabolomic effects of CeO2, SiO2 and CuO metal oxide nanomaterials on HepG2 cells. Particle Fibre Toxicol. 2017;14:50 Published online 2017 Nov 29. https://doi.org/10.1186/s12989-017-0230-4.

CAS  Article  Google Scholar 

Kitchin KT, Richards JA, Robinette BL, Wallace KA, Coates NH, Castellon BT, Grulke EA. Biochemical effects of some CeO2, SiO2 and TiO2 nanomaterials in HepG2 cells. Cell Bio and Toxicol. 2019;35(2):129–49. https://doi.org/10.1007/s10565-018-9445x

Lai JC, Blass JP. Neurotoxic effects of copper: inhibition of glycolysis and glycolytic enzymes. Neurochem Res. 1984;9(12):1699–710.

CAS  PubMed  Article  Google Scholar 

Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44(6):2169–75.

CAS  PubMed  Article  Google Scholar 

Mackevica A, Revilla P, Brinch A, Hansen S. Current uses of nanomaterials in biocidal products and treated articles in the EU. Environ Sci: Nano. 2016;3:1195–205.

CAS  Google Scholar 

Manna P, Ghosh M, Ghosh J, Das J, Sil PC. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: role of IkappaBalpha/NF-kappaB, MAPKs and mitochondrial signal. Nanotoxicology. 2012;6(1):1–21.

CAS  PubMed  Article  Google Scholar 

Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.

CAS  Article  Google Scholar 

Merrifield RC, Wang ZW, Palmer RE, Lead JR. Synthesis and characterization of polyvinylpyrrolidone coated cerium oxide nanoparticles. Environ Sci Technol. 2013;47(21):12426–33.

CAS  PubMed  Article  Google Scholar 

Mishchuk NA. The model of hydrophobic attraction in the framework of classical DLVO forces. Adv Colloid Interf Sci. 2011;168(1-2):149–66.

CAS  Article  Google Scholar 

Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mize CE, Langdon RG. Hepatic glutathione reductase. I. Purification and general kinetic properties. J Biol Chem. 1962;237:1589–95.

CAS  PubMed  Article  Google Scholar 

Monteiro-Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 2009;234(2):222–35.

CAS  PubMed  Article  Google Scholar 

Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

CAS  PubMed  Article  Google Scholar 

Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184(1):18–25.

CAS  PubMed  Article  Google Scholar 

Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, et al. A biocompatible medium for nanomparticle dispersion. Nanotoxicology. 2009;2:144–54.

Article  CAS  Google Scholar 

Price C, Alberti K. Biochemical assessment of liver function. In: Wright RM, Alberti K, Karran S, Millward-Sadler G, editors. Liver and biliary disease-pathophysiology, diagnosis, management. London: W. B. Saunders; 1979. p. 381–416.

Google Scholar 

Rafter GW. Copper inhibition of glutathione reductase and its reversal with gold thiolates, thiol, and disulfide compounds. Biochem Med. 1982a;27(3):381–91.

CAS  PubMed  Article  Google Scholar 

Rafter GW. The effect of copper on glutathione metabolism in human leukocytes. Biol Trace Elem Res. 1982b;4(2-3):191–7.

CAS  PubMed  Article  Google Scholar 

Sarkar A, Das J, Manna P, Sil PC. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology. 2011;290(2-3):208–17.

PubMed  Article  CAS  Google Scholar 

Serafini MT, Romeu A, Arola L. Zn(II), Cd(II) and Cu(II) interactions on glutathione reductase and glucose-6-phosphate dehydrogenase. Biochem Int. 1989;18(4):793–802.

CAS  PubMed  Google Scholar 

Shi M, De Mesy Bently KL, Palui G, Mattoussi H, Elder A, Yang H. The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale. 2017;9:4739–50.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Song MF, Li YS, Kasai H, Kawai K. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr. 2012;50(3):211–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44(14):5649–54.

CAS  PubMed  Article  Google Scholar 

Thai SF, Wallace KA, Jones CP, Ren H, Castellon BT, Crooks J, et al. differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 Cells. J Nanosci Nanotechnol. 2015;15(12):9925–37. https://doi.org/10.1096/fj.09-135731.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif