Functional and Metabolic Imaging in Heart Failure with Preserved Ejection Fraction: Promises, Challenges, and Clinical Utility

Lam CSP, Donal E, Kraigher-Krainer E, Vasan RS. Epidemiology and clinical course of heart failure with preserved ejection fraction. European Journal of Heart Failure. 2011;13(1):18–28.

PubMed  Article  Google Scholar 

Owan TE, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine. 2006;355(3):251–9.

CAS  PubMed  Article  Google Scholar 

Hoekstra T, Lesman-Leegte I, van Veldhuisen DJ, Sanderman R, Jaarsma T. Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction. European Journal of Heart Failure. 2011;13(9):1013–8.

PubMed  Article  Google Scholar 

Shah SJ, et al. Baseline characteristics of patients in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circulation Heart Failure. 2013;6(2):184–92.

CAS  PubMed  Article  Google Scholar 

Steinberg BA, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: Prevalence, therapies, and outcomes. Circulation. 2012;126(1):65–75.

PubMed  Article  Google Scholar 

Gaziano L, et al. Risk factors and prediction models for incident heart failure with reduced and preserved ejection fraction. ESC Heart Failure. 2021;8(6):4893–903.

PubMed  PubMed Central  Article  Google Scholar 

Bhatia RS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. The New England Journal of Medicine. 2006;355(3):260–9.

CAS  PubMed  Article  Google Scholar 

Lam CSP, et al. Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: The Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circulation Heart Failure. 2012;5(5):571–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yancy CW, et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: A report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. Journal of the American College of Cardiology. 2006;47(1):76–84.

PubMed  Article  Google Scholar 

Lindman BR, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: A RELAX trial ancillary study. Journal of the American College of Cardiology. 2014;64(6):541–9.

PubMed  PubMed Central  Article  Google Scholar 

Lamb H, et al. Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation. 1999;99(17):2261–7.

CAS  PubMed  Article  Google Scholar 

Rider OJ, et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012;125(12):1511–9.

CAS  PubMed  Article  Google Scholar 

Levelt E, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. European Heart Journal. 2015;37(46):3461–9.

PubMed  PubMed Central  Article  Google Scholar 

Rayner J, et al. The relative contribution of metabolic and structural abnormalities to diastolic dysfunction in obesity. International Journal of Obesity. 2018;42(3):441–7.

CAS  PubMed  Article  Google Scholar 

Rayner J, et al. Myocardial energetics in obesity: Enhanced ATP delivery through creatine kinase with blunted stress response. Circulation. 2020;141(14):1152–63.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rayner J, et al. Obesity modifies the energetic phenotype of dilated cardiomyopathy. Eur heart J. 2021.

Scheuermann-Freestone M, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107(24):3040–6.

CAS  PubMed  Article  Google Scholar 

McDonagh T, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2021;42(36):3599–726.

CAS  PubMed  Article  Google Scholar 

Borbély A, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111(6):774–81.

PubMed  Article  Google Scholar 

Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: Pathophysiology, diagnosis, and treatment. Eur Heart J. 2010;32(6):670–9.

PubMed  PubMed Central  Article  Google Scholar 

A AO, Shah SJ. Diagnosis and management of Heart Failure with Preserved Ejection Frac-tion : 10 Key Lessons. Current Cardiology Reviews. 2015;11(1):42–52.

PubMed Central  Google Scholar 

Gorter TM, Obokata M, Reddy YNV, Melenovsky V, Borlaug BA. Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease. European Heart Journal. 2018;39(30):2825–35.

PubMed  PubMed Central  Article  Google Scholar 

Obokata M, et al. Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. European Heart Journal. 2018;39(30):2810–21.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lamb HJ, et al. Diastolic dysfunction in Hypertensive heart disease is associated with altered myocardial metabolism. Circulation. 1999;99(17):2261–7.

CAS  PubMed  Article  Google Scholar 

Reddy YNV, et al. The haemodynamic basis of lung congestion during exercise in heart failure with preserved ejection fraction. European Heart Journal. 2019;40(45):3721–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fillmore N, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Molecular Medicine (Cambridge, Mass). 2018;24(1):3.

Google Scholar 

Hage C, et al. Metabolomic profile in HFpEF vs HFrEF patients. Journal of Cardiac Failure. 2020;26(12):1050–9.

PubMed  Article  Google Scholar 

Guazzi M, Ghio S, Adir Y. Pulmonary hypertension in HFpEF and HFrEF : JACC review topic of the week. Journal of the American College of Cardiology. 2020;76(9):1102–11.

PubMed  Article  Google Scholar 

Abebe TB, Gebreyohannes EA, Tefera YG, Abegaz TM. Patients with HFpEF and HFrEF have different clinical characteristics but similar prognosis: A retrospective cohort study. BMC Cardiovascular Disorders. 2016;16(1):232.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Neubauer S. The failing heart – an engine out of fuel. New England Journal of Medicine. 2007;356(11):1140–51.

PubMed  Article  Google Scholar 

Stanley W, Recchia F, Lopaschuk G. Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews. 2005;85(3):1093–129.

CAS  PubMed  Article  Google Scholar 

Lopaschuk G, Karwi Q, Tian R, Wende A, Abel E. Cardiac energy metabolism in heart failure. Circulation Research. 2021;128(10):1487–513.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Watson WD, et al. Use of cardiac magnetic resonance to detect changes in metabolism in heart failure. Cardiovascular Diagnosis and Therapy. 2020;10(3):583–97.

PubMed  PubMed Central  Article  Google Scholar 

Wisneski J, Stanley W, Neese R, Gertz E. Effects of acute hyperglycemia on myocardial glycolytic activity in humans. The Journal of Clinical Investigation. 1990;85(5):1648–56.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Saddik M, Lopaschuk G. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. The Journal of Biological Chemistry. 1991;266(13):8162–70.

CAS  PubMed  Article  Google Scholar 

Karwi Q, Uddin G, Ho K, Lopaschuk G. Loss of metabolic flexibility in the failing heart. Frontiers in Cardiovascular Medicine. 2018;5:68.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Savarese G, Lund L. Global public health burden of heart failure. Cardiac Failure Review. 2017;3(1):7–11.

PubMed  PubMed Central  Article  Google Scholar 

Hardy C, Weiss R, Bottomley P, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. American Heart Journal. 1991;1:795–801.

Article  Google Scholar 

Neubauer S, et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation. 1992;86(6):1810–8.

CAS  PubMed  Article  Google Scholar 

Neubauer S, et al. Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated heart muscle disease. European Heart Journal. 1995;16:115–8.

CAS  PubMed  Article  Google Scholar 

Neubauer S, et al. Myocardial phosphocreatine-to-atp ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997;96(7):2190–6.

留言 (0)

沒有登入
gif