The gut microbiome, immune check point inhibition and immune-related adverse events in non-small cell lung cancer

Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. D., & Doré, J. (1999). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environment Microbiology, 65(11), 4799–4807. https://doi.org/10.1128/aem.65.11.4799-4807.1999

CAS  Article  Google Scholar 

Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107–118. https://doi.org/10.1016/j.cell.2005.05.007

CAS  Article  PubMed  Google Scholar 

Nakatsuji, T., Chen, T. H., Narala, S., Chun, K. A., Two, A. M., Yun, T., Shafiq, F., Kotol, P. F., Bouslimani, A., Melnik, A. V., Latif, H., Kim, J. N., Lockhart, A., Artis, K., David, G., Taylor, P., Streib, J., Dorrestein, P. C., Grier, A., Gill, S. R., et al. (2017). Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med, 9(378). https://doi.org/10.1126/scitranslmed.aah4680

Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 330(6012), 1768–1773. https://doi.org/10.1126/science.1195568

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen, D. S., & Mellman, I. (2017). Elements of cancer immunity and the cancer-immune set point. Nature, 541(7637), 321–330. https://doi.org/10.1038/nature21349

CAS  Article  PubMed  Google Scholar 

Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M., & Salminen, S. (2007). Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Applied and Environment Microbiology, 73(23), 7767–7770. https://doi.org/10.1128/aem.01477-07

CAS  Article  Google Scholar 

Fluckiger, A., Daillère, R., Sassi, M., Sixt, B. S., Liu, P., Loos, F., Richard, C., Rabu, C., Alou, M. T., Goubet, A.-G., Lemaitre, F., Ferrere, G., Derosa, L., Duong, C. P. M., Messaoudene, M., Gagné, A., Joubert, P., Sordi, L. D., Debarbieux, L., Simon, S., et al. (2020). Cross-reactivity between tumor MHC class I– restricted antigens and an enterococcal bacteriophage. Science, 369(6506), 936–942. https://doi.org/10.1126/science.aax0701

CAS  Article  PubMed  Google Scholar 

Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical Journal of Gastroenterology, 11(1), 1–10. https://doi.org/10.1007/s12328-017-0813-5

Article  PubMed  Google Scholar 

Blaser, M. J. (2016). Antibiotic use and its consequences for the normal microbiome. Science, 352(6285), 544–545. https://doi.org/10.1126/science.aad9358

CAS  Article  PubMed  PubMed Central  Google Scholar 

Holota, Y., Dovbynchuk, T., Kaji, I., Vareniuk, I., Dzyubenko, N., Chervinska, T., Zakordonets, L., Stetska, V., Ostapchenko, L., Serhiychuk, T., & Tolstanova, G. (2019). The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS ONE, 14(8), e0220642–e0220642. https://doi.org/10.1371/journal.pone.0220642

CAS  Article  PubMed  PubMed Central  Google Scholar 

Palleja, A., Mikkelsen, K. H., Forslund, S. K., Kashani, A., Allin, K. H., Nielsen, T., Hansen, T. H., Liang, S., Feng, Q., Zhang, C., Pyl, P. T., Coelho, L. P., Yang, H., Wang, J., Typas, A., Nielsen, M. F., Nielsen, H. B., Bork, P., Wang, J., Vilsbøll, T., et al. (2018). Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology, 3(11), 1255–1265. https://doi.org/10.1038/s41564-018-0257-9

CAS  Article  PubMed  Google Scholar 

Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E. E., Brochado, A. R., Fernandez, K. C., Dose, H., Mori, H., Patil, K. R., Bork, P., & Typas, A. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 555(7698), 623–628. https://doi.org/10.1038/nature25979

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jackson, M. A., Goodrich, J. K., Maxan, M. E., Freedberg, D. E., Abrams, J. A., Poole, A. C., Sutter, J. L., Welter, D., Ley, R. E., Bell, J. T., Spector, T. D., & Steves, C. J. (2016). Proton pump inhibitors alter the composition of the gut microbiota. Gut, 65(5), 749–756. https://doi.org/10.1136/gutjnl-2015-310861

CAS  Article  PubMed  Google Scholar 

Pierrard, J., & Seront, E. (2019). Impact of the gut microbiome on immune checkpoint inhibitor efficacy-a systematic review. Current Oncology, 26(6), 395–403. https://doi.org/10.3747/co.26.5177

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J. R., Prifti, E., Nielsen, T., Juncker, A. S., Manichanh, C., Chen, B., Zhang, W., Levenez, F., Wang, J., Xu, X., Xiao, L., Liang, S., Zhang, D., et al. (2014). An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 32(8), 834–841. https://doi.org/10.1038/nbt.2942

CAS  Article  PubMed  Google Scholar 

Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., & Knight, R. (2011). UniFrac: An effective distance metric for microbial community comparison. ISME Journal, 5(2), 169–172. https://doi.org/10.1038/ismej.2010.133

Article  PubMed  Google Scholar 

Manchester, M., & Anand, A. (2017). Chapter Two - Metabolomics: Strategies to define the role of metabolism in virus infection and pathogenesis. In M. Kielian, T. C. Mettenleiter, & M. J. Roossinck (Eds.), Advances in virus research (Vol. 98, pp. 57–81). Academic Press. https://doi.org/10.1016/bs.aivir.2017.02.001

McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., Andersen, G. L., Knight, R., & Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME Journal, 6(3), 610–618. https://doi.org/10.1038/ismej.2011.139

CAS  Article  PubMed  Google Scholar 

Davis, C., Kota, K., Baldhandapani, V., Gong, W., Abubucker, S., Becker, E., Martin, J., Wylie, K. M., Khetani, R., Hudson, M. E., Weinstock, G. M., & Mitreva, M. (2015). mBLAST: Keeping up with the sequencing explosion for (meta)genome analysis. J Data Mining Genomics Proteomics, 4(3). https://doi.org/10.4172/2153-0602.1000135

Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grim, C. J., Daquigan, N., Lusk Pfefer, T. S., Ottesen, A. R., White, J. R., & Jarvis, K. G. (2017). High-resolution microbiome profiling for detection and tracking of Salmonella enterica. Frontiers in Microbiology, 8, 1587. https://doi.org/10.3389/fmicb.2017.01587

Article  PubMed  PubMed Central  Google Scholar 

Brumfield, K. D., Huq, A., Colwell, R. R., Olds, J. L., & Leddy, M. B. (2020). Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data. PLoS ONE, 15(2), e0228899. https://doi.org/10.1371/journal.pone.0228899

Article  PubMed  PubMed Central  Google Scholar 

Durazzi, F., Sala, C., Castellani, G., Manfreda, G., Remondini, D., & De Cesare, A. (2021). Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Science and Reports, 11(1), 3030. https://doi.org/10.1038/s41598-021-82726-y

CAS  Article  Google Scholar 

Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D., & Knight, R. (2011). Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 13(1), 47–58. https://doi.org/10.1038/nrg3129

CAS  Article  PubMed  PubMed Central  Google Scholar 

Keegan, K. P., Glass, E. M., & Meyer, F. (2016). MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods in Molecular Biology, 1399, 207–233. https://doi.org/10.1007/978-1-4939-3369-3_13

CAS  Article  PubMed  Google Scholar 

Beghini, F., McIver, L. J., Blanco-Miguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A. M., Valles-Colomer, M., Weingart, G., Zhang, Y., Zolfo, M., Huttenhower, C., Franzosa, E. A., & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife, 10. https://doi.org/10.7554/eLife.65088

Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P. L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., Bizet, C., et al. (2013). The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537

CAS  Article  PubMed  PubMed Central  Google Scholar 

Daillère, R., Vétizou, M., Waldschmitt, N., Yamazaki, T., Isnard, C., Poirier-Colame, V., Duong, C. P. M., Flament, C., Lepage, P., Roberti, M. P., Routy, B., Jacquelot, N., Apetoh, L., Becharef, S., Rusakiewicz, S., Langella, P., Sokol, H., Kroemer, G., Enot, D., Roux, A., et al. (2016). Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity, 45(4), 931–943. https://doi.org/10.1016/j.immuni.2016.09.009

CAS  Article  PubMed  Google Scholar 

Oh, B., Boyle, F., Pavlakis, N., Clarke, S., Guminski, A., Eade, T., Lamoury, G., Carroll, S., Morgia, M., Kneebone, A., Hruby, G., Stevens, M., Liu, W., Corless, B., Molloy, M., Libermann, T., Rosenthal, D., & Back, M. (2021). Emerging evidence of the gut microbiome in chemotherapy: A clinical review [Mini Review]. Front Oncol, 11. https://doi.org/10.3389/fonc.2021.706331

Zhao, Z., Fei, K., Bai, H., Wang, Z., Duan, J., & Wang, J. (2021). Metagenome association study of the gut microbiome revealed biomarkers linked to chemotherapy outcomes in locally advanced and advanced lung cancer. Thorac Cancer, 12(1), 66–78. https://doi.org/10.1111/1759-7714.13711

CAS  Article  PubMed  Google Scholar 

McQuade, J. L., Daniel, C. R., Helmink, B. A., & Wargo, J. A. (2019). Modulating the microbiome to improve therapeutic response in cancer. The Lancet Oncology, 20(2), e77–e91. https://doi.org/10.1016/S1470-2045(18)30952-5

Article  PubMed  Google Scholar 

Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22, 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803

CAS  Article  PubMed  Google Scholar 

Naidoo, J., Page, D. B., & Wolchok, J. D. (2014). Immune checkpoint blockade. Hematology/oncology Clinics of North America, 28(3), 585–600. https://doi.org/10.1016/j.hoc.2014.02.002

Article  PubMed  Google Scholar 

Reck, M., Rodriguez-Abreu, D., Robinson, A. G., Hui, R., Csoszi, T., Fulop, A., Gottfried, M., Peled, N., Tafreshi, A., Cuffe, S., O’Brien, M., Rao, S., Hotta, K., Leiby, M. A., Lubiniecki, G. M., Shentu, Y., Rangwala, R., Brahmer, J. R., & Investigators, K.-. (2016). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med, 375(19), 1823-1833. https://doi.org/10.1056/NEJMoa1606774

Mok, T. S. K., Wu, Y.-L., Kudaba, I., Kowalski, D. M., Cho, B. C., Turna, H. Z., Castro, G., Jr., Srimuninnimit, V., Laktionov, K. K., Bondarenko, I., Kubota, K., Lubiniecki, G. M., Zhang, J., Kush, D., Lopes, G., Adamchuk, G., Ahn, M.-J., Alexandru, A., Altundag, O., Alyasova, A., et al. (2019). Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. The Lancet, 393(10183), 1819–1830. https://doi.org/10.1016/S0140-6736(18)32409-7

CAS  Article 

留言 (0)

沒有登入
gif