Dendrimer-based drug delivery systems: history, challenges, and latest developments

Vögtle F, Richardt G, Werner N. Introduction. In: Vögtle F, Richardt G, Werner N, editors. Dendrimer chemistry: concepts, syntheses, properties, applications. Wiley: Academic; 2009. p. 1–24.

Chapter  Google Scholar 

Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis. 1978;9:155–8.

Article  Google Scholar 

Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

Article  Google Scholar 

Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A Polym Chem. 2002;40:2719–28.

Article  Google Scholar 

Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromol. 2016;17:3103–14.

Article  Google Scholar 

Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40:173–90.

Article  Google Scholar 

Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev. 2009;109:6275–540.

Article  Google Scholar 

Wang D, Astruc D. Dendritic catalysis—basic concepts and recent trends. Coord Chem Rev. 2013;257:2317–34.

Article  Google Scholar 

Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

Article  Google Scholar 

Idris AO, Mamba B, Feleni U. Poly (propylene imine) dendrimer: a potential nanomaterial for electrochemical application. Mater Chem Phys. 2020;244: 122641.

Article  Google Scholar 

Caminade A-M, Majoral J-P. Nanomaterials based on phosphorus dendrimers. Acc Chem Res. 2004;37:341–8.

Article  Google Scholar 

de Brabander van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl. 1993;32:1308–11.

Article  Google Scholar 

Robert G. Denkewalter, Jaroslav Kolc, Lukasavage WJ. Macromolecular highly branched homogenerous compound based on lysine units. United States Patent, 4,289,872, Sep.15, 1981.

Gillies ER, Fréchet JMJ. Designing macromolecules for therapeutic applications: polyester dendrimer poly(ethylene oxide) “Bow-Tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc. 2002;124:14137–46.

Article  Google Scholar 

Launay N, Caminade A-M, Lahana R, Majoral J-P. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew Chem Int Ed Engl. 1994;33:1589–92.

Article  Google Scholar 

Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 2015;20:9263–94.

Article  Google Scholar 

Deng X-X, Du F-S, Li Z-C. Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity. ACS Macro Lett. 2014;3:667–70.

Article  Google Scholar 

Fan X, Hu Z, Wang G. Facile synthesis of polyester dendrimer via combining thio-bromo “Click” chemistry and ATNRC. J Polym Sci A Polym Chem. 2015;53:1762–8.

Article  Google Scholar 

Jee J-A, Spagnuolo LA, Rudick JG. Convergent synthesis of dendrimers via the passerini three-component reaction. Org Lett. 2012;14:3292–5.

Article  Google Scholar 

Tomalia DA, Hedstrand DM, Ferritto MS. Comb-burst dendrimer topology: new macromolecular architecture derived from dendritic grafting. Macromolecules. 1991;24:1435–8.

Article  Google Scholar 

Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.

Article  Google Scholar 

Shi X, Majoros IJ, Baker JR. Capillary electrophoresis of poly(amidoamine) dendrimers: from simple derivatives to complex multifunctional medical nanodevices. Mol Pharm. 2005;2:278–94.

Article  Google Scholar 

Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99:1665–88.

Article  Google Scholar 

Jackson CL, Chanzy HD, Booy FP, Drake BJ, Tomalia DA, Bauer BJ, Amis EJ. Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules. 1998;31:6259–65.

Article  Google Scholar 

Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15:171–85.

Article  Google Scholar 

Rao BN, Viswanath V, Reddy KR, Fathima SR, Surekha P, Bhuvaneswari S. Dendrimers–structure, synthesis, encapsulation, characterization and application. J Global Trends Pharm Sci. 2015;6:2860–6.

Google Scholar 

Parekh HS. The advance of dendrimers–a versatile targeting platform for gene/drug delivery. Curr Pharm Design. 2007;13:2837–50.

Article  Google Scholar 

Kurtoglu YE, Mishra MK, Kannan S, Kannan RM. Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. Int J Pharm. 2010;384:189–94.

Article  Google Scholar 

Gupta V, Nayak S. Dendrimers: A review on synthetic approaches. J Appl Pharm Sci. 2015;5:117–22.

Article  Google Scholar 

Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus. 2012;2:307–24.

Article  Google Scholar 

Yang H, Morris JJ, Lopina ST. Polyethylene glycol–polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 2004;273:148–54.

Article  Google Scholar 

Pooresmaeil M, Namazi H. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. Eur Polym J. 2021;148: 110356.

Article  Google Scholar 

Agrawal P, Gupta U, Jain NK. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials. 2007;28:3349–59.

Article  Google Scholar 

Sharma AK, Gupta L, Sahu H, Qayum A, Singh SK, Nakhate KT, et al. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm Res. 2018;35:9.

Article  Google Scholar 

Han M, Huang-Fu M-Y, Guo W-W, Guo N-N, Chen J, Liu H-N, et al. MMP-2-Sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl Mater Interfaces. 2017;9:42459–70.

Article  Google Scholar 

Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev. 2013;65:1204–14.

Article  Google Scholar 

Agarwal A, Gupta U, Asthana A, Jain NK. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials. 2009;30:3588–96.

Article  Google Scholar 

He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, et al. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Transl Res. 2018;193:13–30.

Article  Google Scholar 

Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials. 2006;27:660–9.

Article  Google Scholar 

Lancina MG, Wang J, Williamson GS, Yang H. DenTimol as a dendrimeric timolol analogue for glaucoma therapy: synthesis and preliminary efficacy and safety assessment. Mol Pharm. 2018;15:2883–9.

Article  Google Scholar 

Lancina MG, Yang H. Dendrimers for ocular drug delivery. Can J Chem. 2017;95:897–902.

Article  Google Scholar 

Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, et al. Enzyme-triggered transcytosis of dendrimer–drug conjugate for deep penetration into pancreatic tumors. ACS Nano. 2020;14:4890–904.

Article  Google Scholar 

Jiang W, Luo X, Wei L, Yuan S, Cai J, Jiang X, et al. The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy. Small. 2021;17:2102695.

Article  Google Scholar 

Liu H, Wang H, Yang W, Cheng Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc. 2012;134:17680–7.

Article  Google Scholar 

Shen Y, Zhou Z, Sui M, Tang J, Xu P, Kirk EAV, et al. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine. 2010;5:1205–17.

Article  Google Scholar 

Pang X, Jiang Y, Xiao Q, Leung AW, Hua H, Xu C. pH-Responsive polymer–drug conjugates: design and progress. J Control Release. 2016;222:116–29.

Article  Google Scholar 

Wang J, He H, Cooper RC, Gui Q, Yang H. Drug-conjugated dendrimer hydrogel enables sustained drug release via a self-cleaving mechanism. Mol Pharm. 2019;16:1874–80.

Article  Google Scholar 

Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A. Polyamidoamine Starburst® dendrimers as solubility enhancers. Int J Pharm. 2000;197:239–41.

Article  Google Scholar 

Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Delivery Rev. 2005;57:2177–202.

Article  Google Scholar 

Eliyahu H, Barenholz Y, Domb AJ. Polymers for DNA delivery. Molecules. 2005;10:34–64.

Article  Google Scholar 

Surekha B, Kommana NS, Dubey SK, Kumar AVP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surface B. 2021;204: 111837.

Article  Google Scholar 

Choi YJ, Kang SJ, Kim YJ, Lim YB, Chung HW. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug Chem Toxicol. 2010;33:357–66.

Article  Google Scholar 

Zhang J, Liu D, Zhang M, Sun Y, Zhang X, Guan G, et al. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. Int J Nanomed. 2016;11:3677–90.

Article  Google Scholar 

Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.

Article  Google Scholar 

Xu L, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater. 2017;57:251–61.

Article  Google Scholar 

Chaplot SP, Rupenthal ID. Dendrimers for gene delivery–a potential approach for ocular therapy? J Pharm Pharmacol. 2013;66:542–56.

Article  Google Scholar 

Cooper RC, Yang H. Duplex of polyamidoamine dendrimer/custom-designed nuclear-localization sequence peptide for enhanced gene delivery. Bioelectricity. 2020;2:150–7.

留言 (0)

沒有登入
gif