Follistatin-like 1 and its paralogs in heart development and cardiovascular disease

Oshima Y, Ouchi N, Sato K et al (2008) Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117:3099–3108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shibanuma M, Mashimo J, Mita A et al (1993) Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur J Biochem FEBS 217:13–19

CAS  Article  Google Scholar 

Zwijsen A, Blockx H, Van Arnhem W et al (1994) Characterization of a rat C6 glioma-secreted follistatin-related protein (FRP). Cloning and sequence of the human homologue. Eur J Biochem 225:937–946

CAS  Article  Google Scholar 

Sylva M, Moorman AFM, van den Hoff MJB (2013) Follistatin-like 1 in vertebrate development: follistatin-like 1 in vertebrate development. Birth Defects Res Part C Embryo Today Rev 99:61–69. https://doi.org/10.1002/bdrc.21030

CAS  Article  Google Scholar 

Mattiotti A, Prakash S, Barnett P, van den Hoff MJB (2018) Follistatin-like 1 in development and human diseases. Cell Mol Life Sci CMLS 75:2339–2354. https://doi.org/10.1007/s00018-018-2805-0

CAS  Article  PubMed  Google Scholar 

Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7 Suppl 1:S12.1–14. https://doi.org/10.1186/gb-2006-7-s1-s12

Takehara-Kasamatsu Y, Tsuchida K, Nakatani M et al (2007) Characterization of follistatin-related gene as a negative regulatory factor for activin family members during mouse heart development. J Med Investig JMI 54:276–288

Article  Google Scholar 

Lara-Pezzi E, Felkin LE, Birks EJ et al (2008) Expression of follistatin-related genes is altered in heart failure. Endocrinology 149:5822–5827. https://doi.org/10.1210/en.2008-0151

CAS  Article  PubMed  Google Scholar 

Oshima Y, Ouchi N, Shimano M et al (2009) Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. Circulation 120:1606–1615. https://doi.org/10.1161/CIRCULATIONAHA.109.872200

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shimano M, Ouchi N, Nakamura K et al (2011) Cardiac myocyte-specific ablation of follistatin-like 3 attenuates stress-induced myocardial hypertrophy. J Biol Chem 286:9840–9848. https://doi.org/10.1074/jbc.M110.197079

CAS  Article  PubMed  PubMed Central  Google Scholar 

Panse KD, Felkin LE, López-Olañeta MM et al (2012) Follistatin-like 3 mediates paracrine fibroblast activation by cardiomyocytes. J Cardiovasc Transl Res 5:814–826. https://doi.org/10.1007/s12265-012-9400-9

Article  PubMed  Google Scholar 

Namdari M, Negahdari B, Cheraghi M et al (2017) Cardiac failure detection in 30 minutes: new approach based on gold nanoparticles. J Microencapsul 34:132–139. https://doi.org/10.1080/02652048.2017.1296900

CAS  Article  PubMed  Google Scholar 

Shintani T, Kato A, Yuasa-Kawada J et al (2004) Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. J Neurobiol 59:34–47. https://doi.org/10.1002/neu.10338

CAS  Article  PubMed  Google Scholar 

Yonehara K, Shintani T, Suzuki R et al (2008) Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLoS ONE 3:e1533. https://doi.org/10.1371/journal.pone.0001533

CAS  Article  PubMed  PubMed Central  Google Scholar 

Masuda T, Kai N, Sakuma C et al (2009) Laser capture microdissection and cDNA array analysis for identification of mouse KIAA/FLJ genes differentially expressed in the embryonic dorsal spinal cord. Brain Res 1249:61–67. https://doi.org/10.1016/j.brainres.2008.10.028

CAS  Article  PubMed  Google Scholar 

GBD (2017) Causes of Death Collaborators (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond Engl 392:1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7

Article  Google Scholar 

Ling C, Cao S, Kong X (2022) Changes of FSTL1 and MMP-9 levels in patients with acute cerebral infarction and its relationship with hemorrhagic transformation. J Clin Neurosci Off J Neurosurg Soc Australas 99:164–168. https://doi.org/10.1016/j.jocn.2021.10.041

CAS  Article  Google Scholar 

Uematsu M, Nakamura K, Nakamura T et al (2020) Persistent myocardial production of follistatin-like 1 is associated with left ventricular adverse remodeling in patients with myocardial infarction: myocardial production of FSTL1 in AMI patients. J Card Fail 26:733–738. https://doi.org/10.1016/j.cardfail.2020.05.015

Article  PubMed  Google Scholar 

Gorelik M, Wilson DC, Cloonan YK et al (2012) Plasma follistatin-like protein 1 is elevated in Kawasaki disease and may predict coronary artery aneurysm formation. J Pediatr 161:116–119. https://doi.org/10.1016/j.jpeds.2012.01.011

CAS  Article  PubMed  PubMed Central  Google Scholar 

El-Armouche A, Ouchi N, Tanaka K et al (2011) Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. Circ Heart Fail 4:621–627. https://doi.org/10.1161/CIRCHEARTFAILURE.110.960625

Article  PubMed  PubMed Central  Google Scholar 

Li B, An J, Feng S, Ge W (2016) Change in serum follistatin-like protein 1 and its clinical significance in children with chronic heart failure. Zhongguo Dang Dai Er Ke Za Zhi

Cunningham F, Achuthan P, Akanni W et al (2018) Ensembl 2019. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1113

Article  PubMed  PubMed Central  Google Scholar 

Stelzer G, Rosen N, Plaschkes I et al (2016) The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma 54:1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. cell 116:281–297

Sundaram GM, Common JEA, Gopal FE et al (2013) “See-saw” expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495:103–106. https://doi.org/10.1038/nature11890

CAS  Article  PubMed  Google Scholar 

Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

CAS  Article  Google Scholar 

The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

CAS  Article  Google Scholar 

Hambrock HO, Kaufmann B, Müller S et al (2004) Structural characterization of TSC-36/Flik: analysis of two charge isoforms. J Biol Chem 279:11727–11735. https://doi.org/10.1074/jbc.M309318200

CAS  Article  PubMed  Google Scholar 

Tanaka M, Ozaki S, Osakada F et al (1998) Cloning of follistatin-related protein as a novel autoantigen in systemic rheumatic diseases. Int Immunol 10:1305–1314

CAS  Article  Google Scholar 

Liu T, Qian W-J, Gritsenko MA et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4:2070–2080. https://doi.org/10.1021/pr0502065

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sayers EW, Agarwala R, Bolton EE et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47:D23–D28. https://doi.org/10.1093/nar/gky1069

CAS  Article  PubMed  Google Scholar 

Finn RD, Attwood TK, Babbitt PC et al (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107

CAS  Article  PubMed  Google Scholar 

Keutmann HT, Schneyer AL, Sidis Y (2004) The role of follistatin domains in follistatin biological action. Mol Endocrinol 18:228–240. https://doi.org/10.1210/me.2003-0112

CAS  Article  PubMed  Google Scholar 

Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496. https://doi.org/10.1093/nar/gkx922

CAS  Article  PubMed  Google Scholar 

Schmidt T, Samaras P, Frejno M et al (2018) ProteomicsDB. Nucleic Acids Res 46:D1271–D1281. https://doi.org/10.1093/nar/gkx1029

CAS  Article  PubMed  Google Scholar 

Bradshaw AD (2012) Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 44:480–488. https://doi.org/10.1016/j.biocel.2011.12.021

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yates B, Braschi B, Gray KA et al (2017) Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res 45:D619–D625. https://doi.org/10.1093/nar/gkw1033

CAS  Article  PubMed  Google Scholar 

Wu Y, Zhou S, Smas CM (2010) Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech Dev 127:183–202. https://doi.org/10.1016/j.mod.2009.12.003

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cheng S, Huang Y, Lou C et al (2018) FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol Ther. https://doi.org/10.1080/15384047.2018.1529101

Article  PubMed  PubMed Central  Google Scholar 

Galimov A, Hartung A, Trepp R et al (2015) Growth hormone replacement therapy regulates microRNA-29a and targets involved in insulin resistance. J Mol Med Berl Ger 93:1369–1379. https://doi.org/10.1007/s00109-015-1322-y

CAS  Article  Google Scholar 

Rosenberg MI, Georges SA, Asawachaicharn A et al (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175:77–85. https://doi.org/10.1083/jcb.200603039

CAS  Article 

留言 (0)

沒有登入
gif