Saphenous nerve block versus femoral nerve block in enhanced recovery after knee replacement surgery under spinal anaesthesia

Comparison of straight leg raising showed superiority of S group over F group with a p-value=0.001 and comparison of mean ± SD values of TUG test showed lower values for S group compared to F group (p-value<0.001). While, comparison of the median values of NRS pain score of FNB and saphenous nerve block showed that there was no significant difference between them both (p-values >0.05%). Total dosage of nalbuphine consumption in the first 24hrs postoperative showed no significant difference between both groups (p-value=0.57).

In agreement with our results, Tan et al., reported that patients receiving ACB (adductor canal block) preserved quadriceps motor power compared to those receiving FNB. VAS pain scores at rest and during movements were found to be equivalent in both patient groups. However, VAS for lateral knee pain showed higher scoring in ACB over FNB group but still, range of movement of knee joint overall was remarkably greater in ACB group than FNB group (Tan et al., 2018).

Ghodki et al., estimated that the analgesic potency of both FNB and ACB were similar by assessing NRS pain score and total narcotics consumption for 48 hours postoperatively following ACL repair surgery. But, ACB was superior to FNB for preserving quadriceps muscle power that was evaluated by straight leg raise and TUG (time up and go) test (Ghodki et al., 2018).

Zhao et al., demonstrated that quadriceps muscle power was higher in ACB than FNB group. They also found that VAS pain scores are similar in both groups apart from pain 2hrs postoperative (during rest) and pain at 12 hours postoperative (during activity) being lower in ACB group. Two patients in FNB manifested a DVT (deep venous thrombosis), while none did in ACB group (Zhao et al., 2017).

In a similar study conducted by FAiAz et al., they assessed analgesic efficacy using VAS pain score and total diclofenac dose consumption while they measured quadriceps strength using the Medical Research Council grading for muscle power. They concluded that FNB was superior to ACB regarding postoperative analgesic quality, however, ACB was the best option overall attributed to quadriceps muscle weakness caused by FNB (AF, 2019).

In controversy to our results, Chuan et al., in their study where TKA patients received either continuous ACB or continuous FNB by infusing 0.2% ropivacaine via a catheter using pump infusions. They found that VAS pain scores, total opioid consumption and TUG test values showed no significant differences between the two groups. So, they concluded that both FNB and ACB were even regarding quality of analgesia and quadriceps strength. Differences between their results and our study results may be due to using ropivacaine in lower concentrations (Chuan et al., 2019).

Song and his colleagues performed a study where both patient groups were compared for quality of analgesia and ambulation ability. They found that NRS pain score and total morphia consumption were higher in ACB whereas, no significant differences were detected in quadriceps power and TUG test values in both groups. Difference regarding analgesia may be due to the fact that in their study, periarticular infiltration was done using a mixture of ropivacaine, ketorolac, morphia and adrenaline. Whereas, difference regarding motor power may be because FNB injection site was done 5 cm proximal to the apex of femoral triangle, so the muscular branches supplying the quadriceps muscle were spared distally (Song et al., 2020).

Similarly, Macrinici et al., in their study estimated that TUG test values were higher in FNB while, MVIC (Maximal voluntary isometric contraction) was lower in FNB compared to ACB. However, VAS pain scores and 6-minutes walking test values showed no significant differences between both patient groups. However, in their study they used 30ml of 0.375% bupivacaine while we used 15ml of 0.5% of the same drug and added to both nerve blocks, they performed intraoperatively local anaesthetic infiltration of the posterior capsule (Macrinici et al., 2017).

留言 (0)

沒有登入
gif