Circ_0004676 exacerbates triple-negative breast cancer progression through regulation of the miR-377-3p/E2F6/PNO1 axis

Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723.

Article  Google Scholar 

Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5:8057. https://doi.org/10.1038/srep08057.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–90. https://doi.org/10.1038/nrclinonc.2016.66.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Boyle P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol. 2012;23(Suppl 6):vi7–12. https://doi.org/10.1093/annonc/mds187.

Article  PubMed  Google Scholar 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

Article  PubMed  Google Scholar 

Chen CS, Ho DR, Chen FY, Chen CR, Ke YD, Su JG. AKT mediates actinomycin D-induced p53 expression. Oncotarget. 2014;5(3):693–703.

Article  Google Scholar 

Chen B, Wei W, Huang X, Xie X, Kong Y, Dai D, et al. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics. 2018;8(14):4003–15. https://doi.org/10.7150/thno.24106.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, et al. Widespread and functional RNA circularization in localized prostate cancer. Cell. 2019;176(4):831–43 e22. https://doi.org/10.1016/j.cell.2019.01.025.

CAS  Article  PubMed  Google Scholar 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34. https://doi.org/10.1016/j.cell.2015.02.014.

CAS  Article  PubMed  Google Scholar 

Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430–42. https://doi.org/10.1016/S0140-6736(16)32454-0.

CAS  Article  PubMed  Google Scholar 

Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014:9287–314. https://doi.org/10.1146/annurev-pathol-012513-104715.

Gong J, Tian J, Lou J, Ke J, Li L, Li J, et al. A functional polymorphism in lnc-LAMC2-1:1 confers risk of colorectal cancer by affecting miRNA binding. Carcinogenesis. 2016;37(5):443–51.

CAS  Article  Google Scholar 

Gregorio AC, Lacerda M, Figueiredo P, Simoes S, Dias S, Moreira JN. Therapeutic implications of the molecular and immune landscape of triple-negative breast cancer. Pathol Oncol Res. 2018;24(4):701–16. https://doi.org/10.1007/s12253-017-0307-2.

CAS  Article  PubMed  Google Scholar 

He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. 2017;36(1):145. https://doi.org/10.1186/s13046-017-0614-1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

He D, Yang X, Kuang W, Huang G, Liu X, Zhang Y. The novel circular RNA circ-PGAP3 promotes the proliferation and invasion of triple negative breast cancer by regulating the miR-330-3p/Myc axis. Oncol Targets Ther. 2020;13:10149–59. https://doi.org/10.2147/OTT.S274574.

CAS  Article  Google Scholar 

Hock AK, Vousden KH. Tumor suppression by p53: fall of the triumvirate? Cell. 2012;149(6):1183–5. https://doi.org/10.1016/j.cell.2012.05.024.

CAS  Article  PubMed  Google Scholar 

Huang L, Liu Z, Hu J, Luo Z, Zhang C, Wang L, et al. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/beta-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res. 2020;156:104774.

CAS  Article  Google Scholar 

Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m 6 A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135. https://doi.org/10.1186/s13045-019-0830-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kocak A, Heselmeyer-Haddad K, Lischka A, Hirsch D, Fiedler D, Hu Y, et al. High levels of chromosomal copy number alterations and TP53 mutations correlate with poor outcome in younger breast cancer patients. Am J Pathol. 2020;190(8):1643–56. https://doi.org/10.1016/j.ajpath.2020.04.015.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7.

CAS  Article  PubMed  Google Scholar 

Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin Z, Jian-Ping H, Tai-Cheng Z. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics. 2018;10(10):1327–46. https://doi.org/10.2217/epi-2018-0023.

CAS  Article  PubMed  Google Scholar 

Lafta IJ. E2F6 is essential for cell viability in breast cancer cells during replication stress. Turk J Biol. 2019;43(5):293–304. https://doi.org/10.3906/biy-1905-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li Z, Chen Z, Hu G, Jiang Y. Roles of circular RNA in breast cancer: present and future. Am J Transl Res. 2019;11(7):3945–54.

CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Ma HY, Hu XW, Qu YY, Wen X, Zhang Y, et al. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int. 2020;20200. https://doi.org/10.1186/s12935-020-01261-4.

Liu RZ, Vo TM, Jain S, Choi WS, Garcia E, Monckton EA, et al. NFIB promotes cell survival by directly suppressing p21 transcription in TP53-mutated triple-negative breast cancer. J Pathol. 2019;247(2):186–98. https://doi.org/10.1002/path.5182.

CAS  Article  PubMed  Google Scholar 

Liu J, Zhao G, Liu XL, Zhang G, Zhao SQ, Zhang SL, et al. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci. 2021;272:119238.

CAS  Article  Google Scholar 

Luporsi E, Andre F, Spyratos F, Martin PM, Jacquemier J, Penault-Llorca F, et al. Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Res Treat. 2012;132(3):895–915. https://doi.org/10.1007/s10549-011-1837-z.

CAS  Article  PubMed  Google Scholar 

Ma XL, Zhan TC, Hu JP, Zhang CL, Zhu KP. Doxorubicin-induced novel circRNA_0004674 facilitates osteosarcoma progression and chemoresistance by upregulating MCL1 through miR-142-5p. Cell Death Dis. 2021;7(1):–309.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8. https://doi.org/10.1038/nature11928.

CAS  Article  PubMed  Google Scholar 

Munoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16(12):741–50. https://doi.org/10.1038/nri.2016.99.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Niu Y, Bao L, Chen Y, Wang C, Luo M, Zhang B, et al. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res. 2020;80(5):964–75. https://doi.org/10.1158/0008-5472.CAN-19-1532.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Perry RP, Kelley DE. Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol. 1970;76(2):127–39. https://doi.org/10.1002/jcp.1040760202.

CAS  Article  PubMed  Google Scholar 

Pham TH, Park HM, Kim J, Hong JT, Yoon DY. STAT3 and p53: dual target for cancer therapy. Biomedicines. 2020;8(12). https://doi.org/10.3390/biomedicines8120637.

Rice SJ, Lai SC, Wood LW, Helsley KR, Runkle EA, Winslow MM, et al. MicroRNA-33a mediates the regulation of high mobility group AT-hook 2 gene (HMGA2) by thyroid transcription factor 1 (TTF-1/NKX2-1). J Biol Chem. 2013;288(23):16348–60. https://doi.org/10.1074/jbc.M113.474643.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Riggi N, Aguet M, Stamenkovic I. Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol. 2018;13:117–40. https://doi.org/10.1146/annurev-pathol-020117-044127.

CAS  Article  PubMed  Google Scholar 

Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235–46. https://doi.org/10.1158/2159-8290.CD-15-0893.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist. 2016;21(9):1050–62. https://doi.org/10.1634/theoncologist.2016-0067.

Article  PubMed  PubMed Central  Google Scholar 

Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi F, et al. EBF1-mediated upregulation of ribosome assembly factor PNO1 contributes to cancer progression by negatively regulating the p53 signaling pathway. Cancer Res. 2019;79(9):2257–70. https://doi.org/10.1158/0008-5472.CAN-18-3238.

CAS  Article  PubMed  Google Scholar 

Sheri A, Dowsett M. Developments in Ki67 and other biomarkers for treatment decision making in breast cancer. Ann Oncol. 2012;23(Suppl):10x219–27. https://doi.org/10.1093/annonc/mds307.

Article  Google Scholar 

Sheu-Gruttadauria J, Xiao Y, Gebert LF, MacRae IJ. Beyond the seed: structural basis for supplementary microRNA targetin

留言 (0)

沒有登入
gif