Cochlear tuning and the peripheral representation of harmonic sounds in mammals

Altoe A, Charaziak KK, Dewey JB, Moleti A, Sisto R, Oghalai JS, Shera CA (2021) The elusive cochlear filter: wave origin of cochlear cross-frequency masking. J Assoc Res Otolaryngol 22:623–640. https://doi.org/10.1007/s10162-021-00814-2

Article  PubMed  Google Scholar 

Bergevin C, McDermott J, Roy S, Li F, Shera C, Wang X (2011) Stimulus-frequency otoacoustic emissions as a probe of cochlear tuning in the common marmoset. Assoc Res Otolaryngol Abstr 34:371

Google Scholar 

Bergevin C, Walsh EJ, McGee JA, Shera CA (2012) Probing cochlear tuning and tonotopy in the tiger using otoacoustic emissions. J Comp Physiol A 198:617–624. https://doi.org/10.1007/s00359-012-0734-1

Article  Google Scholar 

Boersma P, Weenink D. (n.d.). Praat (version 6.0.20). Amsterdam, the Netherlands: phonetic sciences, University of Amsterdam. http://www.fon.hum.uva.nl/praat/

Bohne BA, Kenworthy A, Carr CD (1982) Density of myelinated nerve fibers in the chinchilla cochlea. J Acoust Soc Am 72:102–107. https://doi.org/10.1121/1.387994

CAS  Article  PubMed  Google Scholar 

Braga J et al (2015) Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10:e0127780. https://doi.org/10.1371/journal.pone.0127780

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge. https://doi.org/10.7551/mitpress/1486.001.0001

Book  Google Scholar 

Carney LH (2018) Supra-threshold hearing and fluctuation profiles: implications for sensorineural and hidden hearing loss. J Assoc Res Otolaryngol 19:331–352. https://doi.org/10.1007/s10162-018-0669-5

Article  PubMed  PubMed Central  Google Scholar 

Carney LH, Li T, McDonough JM (2015) Speech coding in the brain: representation of vowel formants by midbrain neurons tuned to sound fluctuations. eNeuro 2:e000415. https://doi.org/10.1523/ENEURO.0004-15.2015

Article  Google Scholar 

Coleman MN, Boyer DM (2012) Inner ear evolution in primates through the cenozoic: implications for the evolution of hearing. Anat Rec 295:615–631. https://doi.org/10.1002/ar.22422

Article  Google Scholar 

Conde-Valverde M et al (2019) The cochlea of the Sima de los Huesos hominins (Sierra de Atapuerca, Spain): new insights into cochlear evolution in the genus Homo. J Hum Evol 136:02641. https://doi.org/10.1016/j.jhevol.2019.102641

Article  Google Scholar 

Condon CJ, White KR, Feng AS (1994) Processing of amplitude-modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus. J Neurophysiol 71:768–784. https://doi.org/10.1152/jn.1994.71.2.768

CAS  Article  PubMed  Google Scholar 

Condon CJ, White KR, Feng AS (1996) Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals. J Comp Physiol A 178:147–157. https://doi.org/10.1007/BF00188158

CAS  Article  PubMed  Google Scholar 

Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10. https://doi.org/10.1016/S0378-5955(00)00168-4

CAS  Article  PubMed  Google Scholar 

Feng AS, Lin WY (1994) Phase-locked response characteristics of single neurons in the frog “cochlear nucleus” to steady-state and sinusoidal-amplitude-modulated tones. J Neurophysiol 72:2209–2221. https://doi.org/10.1152/jn.1994.72.5.2209

CAS  Article  PubMed  Google Scholar 

Feng AS, Ratnam R (2000) Neural basis of hearing in real-world situations. Ann Rev Psychol 51:699–725. https://doi.org/10.1146/annurev.psych.51.1.699

CAS  Article  Google Scholar 

Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer handbook of auditory research. Springer, New York, pp 323–350. https://doi.org/10.1007/978-0-387-47796-1_11

Chapter  Google Scholar 

Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities. J Comp Physiol 100:221–229. https://doi.org/10.1007/BF00614532

Article  Google Scholar 

Feng AS, Hall JC, Siddque S (1991) Coding of temporal parameters of complex sounds by frog auditory nerve fibers. J Neurophysiol 65:424–445. https://doi.org/10.1152/jn.1991.65.3.424

CAS  Article  PubMed  Google Scholar 

Feng AS et al (2009) Systems and methods for interference suppression with directional sensing patterns. United States Patent No. US 7,577,266 B2

Fu Q-J (2008). TigerSpeech technology: innovative speech software (CIS version 1.05.02). http://www.tigerspeech.com/tst_tigercis.html/

Fulop SA (2011) Speech spectrum analysis. Springer, Berlin. https://doi.org/10.1007/978-3-642-17478-0

Book  Google Scholar 

Fuzessery ZM, Feng AS (1982) Frequency selectivity in the anuran auditory midbrain: single unit responses to single and multiple tone stimulation. J Comp Physiol A 146:471–484. https://doi.org/10.1007/BF00609443

Article  Google Scholar 

Fuzessery ZM, Feng AS (1983a) Frequency selectivity in the anuran medulla: excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei. J Comp Physiol A 150:107–119. https://doi.org/10.1007/BF00605294

Article  Google Scholar 

Fuzessery ZM, Feng AS (1983b) Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. pipiens): single and multiunit analyses. J Comp Physiol A 150:333–344. https://doi.org/10.1007/BF00605023

Article  Google Scholar 

Galazyuk AV, Llano D, Feng AS (2000) Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. J Neurophysiol 83:128–138. https://doi.org/10.1152/jn.2000.83.1.128

CAS  Article  PubMed  Google Scholar 

Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138. https://doi.org/10.1016/0378-5955(90)90170-T

CAS  Article  PubMed  Google Scholar 

Gooler DM, Feng AS (1992) Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol 67:1–22. https://doi.org/10.1152/jn.1992.67.1.1

CAS  Article  PubMed  Google Scholar 

Gooler DM, Xu J, Feng AS (1996) Binaural inhibition is important in shaping the free-field frequency selectivity of single neurons in the inferior colliculus. J Neurophysiol 76:2580–2594. https://doi.org/10.1152/jn.1996.76.4.2580

CAS  Article  PubMed  Google Scholar 

Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605. https://doi.org/10.1121/1.399052

CAS  Article  PubMed  Google Scholar 

Hall JC, Feng AS (1991) Temporal processing in the dorsal medullary nucleus of the Northern leopard frog (Rana pipiens pipiens). J Neurophysiol 66:955–973. https://doi.org/10.1152/jn.1991.66.3.955

CAS  Article  PubMed  Google Scholar 

Heffner RS, Heffner HE (1991) Behavioral hearing range of the chinchilla. Hear Res 52:13–16. https://doi.org/10.1016/0378-5955(91)90183-A

CAS  Article  PubMed  Google Scholar 

Joris PX, Bergevin C, Kalluri R, McLaughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proc Nat Acad Sci 108:17516–17520. https://doi.org/10.1073/pnas.1105867108

Article  PubMed  PubMed Central  Google Scholar 

Kaya EM, Elhilali M (2017) Modelling auditory attention. Philos Trans R Soc Lond B 372:20160101. https://doi.org/10.1098/rstb.2016.0101

Article  Google Scholar 

Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, Oxford

Google Scholar 

Kirk EC, Gosselin-Ildari AD (2009) Cochlear labyrinth volume and hearing abilities in primates. Anat Rec 292:765–776. https://doi.org/10.1002/ar.20907

Article  Google Scholar 

Mehta AH, Oxenham AJ (2017) Vocoder simulations explain complex pitch perception limitations experienced by cochlear implant users. J Assoc Res Otolaryngol 18:789–802. https://doi.org/10.1007/s10162-017-0632-x

Article  PubMed  PubMed Central  Google Scholar 

Moore BCJ, Brian R, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:750–753. https://doi.org/10.1121/1.389861

CAS  Article  PubMed  Google Scholar 

Niemiec AJ, Yost WA, Shofner WP (1992) Behavioral measures of frequency selectivity in the chinchilla. J Acoust Soc Am 92:2636–2649. https://doi.org/10.1121/1.404380

CAS  Article  PubMed  Google Scholar 

Osmanski MS, Song X, Wang X (2013) The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus). J Neurosci 33:9161–9168. https://doi.org/10.1523/JNEUROSCI.0066-13.2013

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol 4:541–554. https://doi.org/10.1007/s10162-002-3058-y

Article  PubMed  PubMed Central  Google Scholar 

Oxenham AJ, Bernstein JGW, Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proc Nat Acad Sci 101:1421–1425. https://doi.org/10.1073/pnas.0306958101

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oxenham AJ, Micheyl C, Keebler MV, Loper A, Santurette S (2011) Pitch perception beyond the traditional existence region of pitch. Proc Nat Acad Sci 108:7629–7634. https://doi.org/10.1073/pnas.1015291108

Article  PubMed  PubMed Central  Google Scholar 

Rosowski JJ (2013) Comparative middle ear structure and function in vertebrates. In: Puria S, Fay R, Popper A (eds) The middle ear. Springer handbook of auditory research. Springer, New York, pp 31–65

Chapter  Google Scholar 

Saddler MR, Gonzalez R, McDermott JH (2021) Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception. Nat Commun 12:7278. https://doi.org/10.1038/s41467-021-27366-6

CAS  Article  PubMed 

留言 (0)

沒有登入
gif