The cell-line-derived subcutaneous tumor model in preclinical cancer research

Ireson, C. R., Alavijeh, M. S., Palmer, A. M., Fowler, E. R. & Jones, H. J. The role of mouse tumour models in the discovery and development of anticancer drugs. Br. J. Cancer 121, 101–108 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Herter-Sprie, G. S., Kung, A. L. & Wang, K.-K. New cast for a new era: preclinical cancer drug development revisited. J. Clin. Invest. 123, 3639–3645 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Damia, G. & D´Incalci, M. Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models? Eur. J. Cancer 45, 2768–2781 (2009).

CAS  PubMed  Article  Google Scholar 

Ahmad, A. S., Ormiston-Smith, N. & Sasieni, P. D. Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960. Br. J. Cancer 112, 943–947 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morton, C. L. & Houghton, P. J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247–250 (2007).

CAS  PubMed  Article  Google Scholar 

Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).

CAS  PubMed  Article  Google Scholar 

Teicher, B. A. Tumor models for efficacy determination. Mol. Cancer Ther. 5, 2435–2443 (2006).

CAS  PubMed  Article  Google Scholar 

Carver, B. S. & Pandolfi, P. P. Mouse modelling in oncologic preclinical and translational research. Clin. Cancer Res. 12, 5305–5311 (2006).

CAS  PubMed  Article  Google Scholar 

Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

CAS  PubMed  Article  Google Scholar 

Sikder, H. et al. Disruption of ID1 reveals major differences in angiogenesis between transplanted and autochthonous tumours. Cancer Cell 4, 291–299 (2003).

CAS  PubMed  Article  Google Scholar 

Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer 7, 654–658 (2007).

Article  CAS  Google Scholar 

Klein, C. A. Parallel progression of parallel tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

CAS  PubMed  Article  Google Scholar 

Sharpless, N. E. & DePinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754 (2006).

CAS  PubMed  Article  Google Scholar 

Fidler, I. J. & Kripke, M. L. The challenge of targeting metastasis. Cancer Metastasis Rev. 34, 635–641 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Spano, D., Heck, C., De Antonellis, P., Christofori, G. & Zollo, M. Molecular networks that regulate cancer metastasis. Semin. Cancer Biol. 22, 234–249 (2012).

CAS  PubMed  Article  Google Scholar 

Bugge, T. H. et al. Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 90, 4522–4531 (1997).

CAS  PubMed  Article  Google Scholar 

Rose, D. P., Connolly, J. M. & Liu, X. H. Effects of linoleic acid on the growth and metastasis of two human breast cancer cell lines in nude mice and the invasive capacity of these cell lines in vitro. Cancer Res. 54, 6557–6562 (1994).

CAS  PubMed  Google Scholar 

Bailey-Downs, L. C. et al. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression. PLoS One 9, e98624 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Siolas, D. & Hannon, G. J. Patient-derived tumour xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315–5319 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Julien, S. et al. Characterisation of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314–5328 (2012).

CAS  PubMed  Article  Google Scholar 

Clohessy, J. G. & Pandolfi, P. P. Mouse hospital and co-clinical trial project—from bench to bedside. Nat. Rev. Clin. Oncol. 12, 491–498 (2015).

PubMed  Article  Google Scholar 

Zitvogel, L., Pitt, J. M., Daillè, R., Smythe, M. J. & Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer 16, 759–773 (2016).

CAS  PubMed  Article  Google Scholar 

Simpson-Abelson, M. R. et al. Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rγnull mice. J. Immunol. 180, 7009–7018 (2008).

CAS  PubMed  Article  Google Scholar 

Lang, J., Weiss, N., Freed, B. M., Torres, R. & Pelonda, R. Generation of hematopoetic humanized mice in the newborn BALB/c-Rag2null IL2rγnull mouse model: a multivariable optimization approach. Clin. Immunol. 140, 102–116 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lawrence, M. G. et al. Establishment of primary patient-derived xenografts of palliative TURP specimens to study castrate-resistant prostate cancer. Prostate 75, 1475–1483 (2015).

CAS  PubMed  Article  Google Scholar 

Couzin-Frankel, J. The littlest patient. Science 346, 24–27 (2014).

PubMed  Article  Google Scholar 

Delitto, D. et al. Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am. J. Pathol. 185, 1297–1303 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single cell resolution. Nature 518, 422–426 (2015).

CAS  PubMed  Article  Google Scholar 

Baklaushev, V. P. et al. Luciferase expression allows bioluminescence imaging but imposes limitations on the orthotopic mouse (4T1) model of breast cancer. Sci. Rep. 17, 1–17 (2017).

Google Scholar 

Day, C. P. et al. “Glowing head” mice: a genetic tool enabling reliable preclinical image-based evaluation of cancers in immunocompetent allografts. PLoS One 9, e109956 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 647–674 (2011).

Article  CAS  Google Scholar 

Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

PubMed  Article  Google Scholar 

Willoughby, C.E. et al. Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy. J. Clin. Invest. 130, 258–271 (2020).

CAS  PubMed  Article  Google Scholar 

Jiang, Y., Willmore, E., Wedge, S.R. & Ryan, A.J. DNAPK inhibition preferentially compromises the repair of radiation-induced DNA double-strand breaks in chronically hypoxic tumor cells in xenograft models. Mol. Cancer Ther. 20, 1663–1671 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

CAS  PubMed  Article  Google Scholar 

Inoue, T., Terada, N., Kobayashi, T. & Ogawa, O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol. 14, 267–283 (2017).

PubMed  Article  Google Scholar 

Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnai, A. Mouse models for cancer immunotherapy research. Cancer Disco

留言 (0)

沒有登入
gif