The Usefulness of Machine Learning–Based Evaluation of Clinical and Pretreatment [18F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59:225–249

Article  Google Scholar 

Kuo P, Chen MM, Decker RH, Yarbrough WG, Judson BL (2014) Hypopharyngeal cancer incidence, treatment, and survival: temporal trends in the United States. Laryngoscope 124:2064–2069

Article  Google Scholar 

Deschler DG, Day T (2008) TNM Staging of head and neck cancer and neck dissection classification. American Academy of Otolaryngology–Head and Neck Surgery Foundation, Alexandria, pp 10–23

Google Scholar 

Bar-Ad V, Palmer J, Yang H et al (2014) Current management of locally advanced head and neck cancer: the combination of chemotherapy with locoregional treatments. Semin Oncol 41:798–806

Article  Google Scholar 

Garneau JC, Bakst RL, Miles BA (2018) Hypopharyngeal cancer: a state of the art review. Oral Oncol 86:244–250

Article  Google Scholar 

Hamoir M, Schmitz S, Suarez C et al (2018) The current role of salvage surgery in recurrent head and neck squamous cell carcinoma. Cancers (Basel) 10:267

Article  Google Scholar 

Forastiere AA, Adelstein DJ, Manola J (2013) Induction chemotherapy meta-analysis in head and neck cancer: right answer, wrong question. J Clin Oncol 31:2844–2846

CAS  Article  Google Scholar 

Beitler JJ, Zhang Q, Fu KK et al (2014) Final results of local-regional control and late toxicity of RTOG 9003: a randomized trial of altered fractionation radiation for locally advanced head and neck cancer. Int J Radiat Oncol Biol Phys 89:13–20

Article  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

Article  Google Scholar 

von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

Article  Google Scholar 

Wong CK, Chan SC, Ng SH et al (2019) Textural features on 18F-FDG PET/CT and dynamic contrast-enhanced MR imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma. Med (Baltimore) 98:e16608

CAS  Article  Google Scholar 

Chen SW, Shen WC, Lin YC et al (2017) Correlation of pretreatment 18 F-FDG PET tumor textural features with gene expression in pharyngeal cancer and implications for radiotherapy-based treatment outcomes. Eur J Nucl Med Mol Imaging 44:567–580

CAS  Article  Google Scholar 

Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. RadioGraphics 37:505–515

Article  Google Scholar 

Waljee AK, Higgins PD (2010) Machine learning in medicine: a primer for physicians. Am J Gastroenterol 105:1224–1226

Article  Google Scholar 

Hyun SH, Ahn MS, Koh YW, Lee SJ (2019) A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med 44:956–960

Article  Google Scholar 

Nakajo M, Jinguji M, Tani A et al (2021) Application of a machine learning approach for the analysis of clinical and radiomic features of pretreatment [18 F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer. Mol Imaging Biol 23:756–765

CAS  Article  Google Scholar 

Zhong J, Frood R, Brown P et al (2021) Machine learning-based FDG PET-CT radiomics for outcome prediction in larynx and hypopharynx squamous cell carcinoma. Clin Radiol 76:78.e9–78.e17

CAS  Article  Google Scholar 

Nioche C, Orlhac F, Boughdad S et al (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789

CAS  Article  Google Scholar 

Brown PJ, Zhong J, Frood R et al (2019) Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur J Nucl Med Mol Imaging 46:2790–2799

CAS  Article  Google Scholar 

Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

Article  Google Scholar 

Orlhac F, Boughdad S, Philippe C et al (2018) A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59:1321–1328

CAS  Article  Google Scholar 

Koyasu S, Nakamoto Y, Kikuchi M et al (2014) Prognostic value of pretreatment 18F-FDG PET/CT parameters including visual evaluation in patients with head and neck squamous cell carcinoma. AJR Am J Roentgenol 202:851–858

Article  Google Scholar 

Breiman L (2001) Random forests. Mach Learn 45:5–32

Article  Google Scholar 

Rahman R, Kodesh A, Levine SZ, Sandin S, Reichenberg A, Schlessinger A (2020) Identification of newborns at risk for autism using electronic medical records and machine learning. Eur Psychiatry 63:e22

Article  Google Scholar 

Hotta M, Minamimoto R, Miwa K (2019) 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 9:15666

Article  Google Scholar 

Sian H, Purnami SW (2015) Combine sampling support vector machine for imbalanced data classification. Procedia Comput Sci 72:59–66

Article  Google Scholar 

Xie Y, Jiang B, Gong E et al (2019) Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. AJR Am J Roentgenol 212:44–51

Article  Google Scholar 

Cook JA, Ranstam J (2016) Overfitting. Br J Surg 103:1814

CAS  Article  Google Scholar 

Demsar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14:2349–2353

Google Scholar 

Lausen B, Schumacher M (1992) Maximally selected rank statistics. Biometrics 48:73–85

Article  Google Scholar 

Ha S, Choi H, Paeng JC, Cheon GJ (2019) Radiomics in oncological PET/CT: A methodological overview. Nucl Med Mol Imaging 53:14–29

Article  Google Scholar 

Hotta M, Minamimoto R, Gohda Y et al (2021) Prognostic value of 18 F-FDG PET/CT with texture analysis in patients with rectal cancer treated by surgery. Ann Nucl Med 35:843–852

CAS  Article  Google Scholar 

Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4:172–179

Article  Google Scholar 

Suzuki K, Yisong C (2018) In: Suzuki K, Chen Y (eds) Artificial intelligence in decision support systems for diagnosis in medical imaging [Internet]. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-68843-5

Chapter  Google Scholar 

Wachinger C, Reuter M (2016) Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage 139:470–479

Article  Google Scholar 

Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L, Sahmoud T (1996) Larynx preservation in pyriform sinus cancer: preliminary results of a European Organization for Research and Treatment of Cancer phase III trial. EORTC Head and Neck Cancer Cooperative Group. J Natl Cancer Inst 88:890–899

CAS  Article  Google Scholar 

Hoffman HT, Karnell LH, Shah JP et al (1997) Hypopharyngeal cancer patient care evaluation. Laryngoscope 107:1005–1017

CAS  Article  Google Scholar 

Hayashi J, Sakata KI, Someya M et al (2012) Analysis and results of Ku and XRCC4 expression in hypopharyngeal cancer tissues treated with chemoradiotherapy. Oncol Lett 4:151–155

CAS  Article  Google Scholar 

Wendt M, Romanitan M, Näsman A et al (2014) Presence of human papillomaviruses and p16 expression in hypopharyngeal cancer. Head Neck 36:107–112

Article  Google Scholar 

留言 (0)

沒有登入
gif